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Abstract.—It has been suggested that the inability to migrate in response to climate change is a key 
threat to tepui summit biota. Tepui summit organisms might thus seriously be threatened by global 
warming, and there is an urgent need to accurately evaluate their taxonomic status and distributions. 
We investigated phylogenetic relationships among several populations of Stefania ginesi and 
S. satelles, two endemic species reported from some isolated tepui summits, and we examined 
their IUCN conservation status. Molecular phylogenetic analysis and preliminary morphological 
assessment indicate that both species are actually restricted to single tepui summits and that five 
candidate species are involved under these names. We advocate upgrading the conservation status 
of S. ginesi from Least Concern to Endangered, and that of S. satelles from Near Threatened to 
Endangered.
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Introduction

The frog genus Stefania (Hemiphractidae) is endemic 
to an iconic South American biogeographical region 
named “Pantepui” (Mayr and Phelps 1967; McDiarmid 
and Donnelly 2005) (Fig. 1). Pantepui, often referred to 
as the “Lost World” because of Arthur Conan Doyle’s 
famous novel (1912), lies in the western Guiana Shield. 
The region harbors numerous isolated Precambrian 
sandstone tabletop mountains more formally known as 
“tepuis” (Fig. 2). Although Pantepui was initially re-
stricted to tepui slopes and summits above 1,500 m el-
evation (Mayr and Phelps 1967; Rull and Nogué 2007), 
Steyermark (1982), followed by Kok et al. (2012) and 
Kok (2013a), expanded the original definition of Pan-
tepui to include the intervening Pantepui lowlands (200-
400 m asl) and uplands (400-ca. 1,200 m asl) in order 
to better reflect the biogeography and biotic interactions 
in the area (Kok 2013a). The genus Stefania currently 

includes 19 species, 15 of which are restricted to tepui 
slopes or summits (Duellman 2015; Frost 2015). Stefa-
nia species are direct-developers (eggs and juveniles car-
ried on the back of the mother) and occupy various types 
of habitats from lowland rainforest to tepui bogs (Kok 
2013a; Schmid et al. 2013; Duellman 2015). The genus 
Stefania was erected by Rivero (1968) to accommodate 
Cryptobatrachus evansi and a few related new species all 
morphologically divergent from other Cryptobatrachus. 
Shortly later, Rivero (1970) recognized two species-
groups within Stefania: the evansi group including spe-
cies having the head longer than broad and found in the 
lowlands and uplands of Pantepui, and the goini group 
including species having the head broader than long and 
found in the highlands of Pantepui. Kok et al. (2012), 
followed by Castroviejo et al. (2015), showed that, based 
on molecular data, these groups are actually not recip-
rocally monophyletic. A complete molecular phyloge-
netic analysis of the genus Stefania is still lacking, and 
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relationships between many species or populations are 
unknown. Likewise, the exact distribution of some tepui 
summit species is uncertain (e.g., Gorzula and Señaris 
1999). Among these, two tepui summit endemic Stefania 
species are known from several isolated tepui summits: 
Stefania ginesi Rivero, 1968, which is reported from six 
tepuis in the Chimantá massif (Chimantá-tepui, Amurí-
tepui, Abakapá-tepui, Churí-tepui, Akopán-tepui, and 
Murei-tepui; Señaris et al. 1997; Gorzula and Señaris 
1999; Barrio-Amorós and Fuentes 2012; Fig. 1), and Ste-
fania satelles Señaris, Ayarzagüena, and Gorzula, 1997, 
which has a highly disjunct distribution, being reported 
from Aprada-tepui (in the Aprada Massif), Angasima-
tepui, and Upuigma-tepui (two southern outliers of the 
Chimantá massif), and from Murisipán-tepui and Ka-
markawarai-tepui (in the Los Testigos Massif, north of 
the Chimantá massif) (Señaris et al. 1997; Gorzula and 
Señaris 1999; Fig. 1). Stefania ginesi is listed as Least 
Concern (LC) by the International Union for Conserva-
tion of Nature (IUCN) (Stuart et al. 2008) and S. satelles 
is listed as Near Threatened (NT) (Stuart et al. 2008). 
However, preliminary data suggest that their respec-
tive distributions could be more restricted than initially 
thought because more than two species could be involved 
under these names (the authors, unpublished; see also Se-
ñaris et al. 2014 regarding the distribution of S. ginesi). 
Herein we used molecular phylogenetics to investigate 
the relationships among three populations of S. ginesi and 
four populations of S. satelles. We also aim at providing 
a more precise distribution of these two taxa in order to 

refine their conservation status. Indeed, tepui ecosystems 
are reported as particularly sensitive to global warming 
(Nogué et al. 2009), and tepui summit organisms might 
be seriously threatened by habitat loss due to upward 
displacement (Rull and Vegas-Vilarrúbia 2006; see also 
below). Likewise, climate envelope distribution models 
of tepui ecosystems based on future scenarios show that 
potential distributions become drastically smaller under 
global warming (Rödder et al. 2010). Species restricted 
to tepui summits are thus clearly at risk of extinction, and 
there is an urgent need to evaluate their exact taxonomic 
status and precise distribution.

Materials and Methods

Tissue sampling and molecular data

We combined available GenBank sequences of Stefania 
ginesi and S. satelles for fragments of the mitochondrial 
16SrRNA gene (16S) and the protein-coding mitochon-
drial gene NADH hydrogenase subunit 1 (ND1) with 40 
novel DNA sequences of Stefania ginesi and S. satelles: 
nine of fragments of 16S, five of ND1, 13 of the nuclear 
recombination activating gene 1 (RAG1), and 13 of the 
nuclear CXC chemokine receptor type 4 gene (CXCR4). 
We combined this dataset with DNA sequences of four 
additional members of the genus Stefania from out-
side the studied area (three species from east of the Río 
Caroní: S. scalae, an upland species, S. riveroi and S. 
schuberti, two highland species; and one highland spe-

Fig. 1. Left: Map of Pantepui and its location within South America (inset); the thick blue line indicates the Río Caroní. Right: Map 
of the area under study showing localities mentioned in the text (yellow dots represent known localities of occurrence of Stefania 
satelles, white dots represent known localities of occurrence of Stefania ginesi). Numbers indicate sampled localities and Roman 
numerals indicate unsampled localities, as follows: (1) Aprada-tepui, Venezuela; (2) Murisipán-tepui, Venezuela; (3) Upuigma-
tepui, Venezuela; (4) Angasima-tepui, Venezuela; (5) Abakapá-tepui, Venezuela; (6) Chimantá-tepui, Venezuela; (7) Amurí-tepui, 
Venezuela; (i) Kamarkawarai-tepui, Venezuela; (ii) Murei-tepui, Venezuela; (iii) Churí-tepui, Venezuela; (iv) Akopán-tepui, Ven-
ezuela.
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cies from west of the Río Caroní: S. riae; in total 16 novel 
sequences), and with Fritziana ohausi, member of the 
clade sister to Stefania (Castroviejo et al. 2015), which 
was selected as outgroup (see Table 1). Novel sequences 
have been catalogued in GenBank under the accession 
numbers KU958582-958637.

Total genomic DNA was extracted and purified using 
the Qiagen DNeasy® Tissue Kit following manufactur-
er’s instructions. Fragments of 16S (ca. 550 base pairs 

[bp]), of ND1 (ca. 650 bp), and of RAG1 (ca. 550 bp) 
and CXCR4 (ca. 625 bp) were amplified and sequenced 
using the primers listed in Kok et al. (2012) and Biju and 
Bossuyt (2003) under previously described PCR condi-
tions (Biju and Bossuyt 2003; Roelants et al. 2007; Van 
Bocxlaer et al. 2010). PCR products were checked on 
a 1% agarose gel and were sent to BaseClear (Leiden, 
The Netherlands) for purification and sequencing. Chro-
matograms were read using CodonCode Aligner 5.0.2 

Fig. 2. Typical Pantepui landscape. Photograph taken on 8th June 2012 from the summit of Upuigma-tepui, showing Angasima-tepui 
on the left and Akopán-tepui and Amurí-tepui on the right. Note stretches of savannah mainly caused by anthropogenic fires. Photo 
PJRK.

Voucher 16S ND1 RAG1 CXCR4 Genus Species Locality Country Coordinates Elevation (m)

IRSNB16724 JQ742191 JQ742362 KU958600 KU958619 Stefania scalae Salto El Danto Venezuela N 5°57’52” W 61°23’31” 1208

Uncatalogued JQ742172 JQ742343 KU958601 KU958620 Stefania riae Sarisariñama-tepui Venezuela N 4°41’ W 64°13’ ca. 1100

IRSNB15703 JQ742177 JQ742348 KU958602 KU958621 Stefania riveroi Yuruaní-tepui Venezuela N 5°18’50” W 60°51’50” 2303

IRSNB15716 JQ742178 JQ742349 KU958603 KU958622 Stefania riveroi Yuruaní-tepui Venezuela N 5°18’50” W 60°51’50” 2303

IRSNB16725 JQ742173 JQ742344 KU958604 KU958623 Stefania “ginesi” Abakapá-tepui Venezuela N 5°11’23” W 62°17’52” 2137

IRSNB16726 JQ742174 JQ742345 KU958605 KU958624 “ginesi” “ginesi” Abakapá-tepui Venezuela N 5°11’07” W 62°17’21” 2209

IRSNB15839 JQ742175 JQ742346 KU958606 KU958625 Stefania “satelles” Angasima-tepui Venezuela N 5°02’36” W 62°04’51” 2122

IRSNB15844 JQ742176 JQ742347 KU958607 KU958626 Stefania “satelles” Angasima-tepui Venezuela N 5°02’36” W 62°04’51” 2122

IRSNB16727 KU958582 KU958593 KU958608 KU958627 Stefania “satelles” Upuigma-tepui Venezuela N 5°05’10” W 61°57’32” 2134

IRSNB16728 KU958583 — KU958609 KU958628 Stefania satelles Aprada-tepui Venezuela N 5°24’39” W 62°27’00” 2551

IRSNB16729 KU958584 — KU958610 KU958629 Stefania satelles Aprada-tepui Venezuela N 5°24’43” W 62°27’03” 2576

IRSNB16730 KU958585 KU958594 KU958611 KU958630 Stefania “ginesi” Amurí-tepui Venezuela N 5°08’34” W 62°07’08” 2215

IRSNB16731 KU958586 KU958595 KU958612 KU958631 Stefania “ginesi” Amurí-tepui Venezuela N 5°08’35” W 62°07’08” 2213

IRSNB16732 KU958587 KU958596 KU958613 KU958632 Stefania schuberti Auyán-tepui Venezuela N 5°45’56” W 62°32’25” 2279

IRSNB16733 KU958588 KU958597 KU958614 KU958633 Stefania schuberti Auyán-tepui Venezuela N 5°45’56” W 62°32’25” 2279

IRSNB16734 KU958589 KU958598 KU958615 KU958634 Stefania “satelles” Murisipán-tepui Venezuela N 5°52’03” W 62°04’30” 2419

IRSNB16735 KU958590 KU958599 KU958616 KU958635 Stefania “satelles” Murisipán-tepui Venezuela N 5°52’03” W 62°04’30” 2419

IRSNB16736 KU958591 — KU958617 KU958636 Stefania ginesi Chimantá-tepui Venezuela N 5°19’12” W 62°12’07” 2180

IRSNB16737 KU958592 — KU958618 KU958637 Stefania ginesi Chimantá-tepui Venezuela N 5°19’12” W 62°12’07” 2180

MZUSP139225 JN157635 KC844945 KC844991 — Fritziana ohausi n/a Brazil n/a n/a

Table 1. List of Stefania taxa and outgroup used in this study, with localities and GenBank accession numbers. Sequences newly 
generated are in boldface. IRSNB = Institut Royal des Sciences Naturelles de Belgique, Belgium; MZUSP = Museu de Zoologia, 
Universidade de São Paulo, Brazil.
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(http://www.codoncode.com/index.htm) and a consensus 
sequence was assembled from the forward and reverse 
primer sequences. MAFFT version 7 (http://mafft.cbrc.
jp/alignment/server/) was used to perform preliminary 
alignment using G-INS-i and default parameters. Mi-
nor alignment corrections were made using MacClade 
4.08 (Maddison and Maddison 2005). Protein-coding 
sequences were translated into amino-acid sequences to 
check for unexpected stop codons. Alignment-ambiguous 
regions of 16S were excluded from subsequent analyses.

Molecular phylogenetic analyses

The combined 16S + ND1 + RAG1 + CXCR4 dataset 
(totalling 2,359 bp after exclusion) was subjected to phy-
logenetic inference using Bayesian analyses. Optimal 
partitioning schemes were estimated with PartitionFinder 
v1.1.1 (Lanfear et al. 2012) using the “greedy” algorithm, 
the “mrbayes” set of models, and the Bayesian Informa-
tion Criterion (BIC) to compare the fit of different mod-
els. Bayesian posterior probabilities (PP) were used to 
estimate clade credibility in MrBayes 3.2.2 (Ronquist et 
al. 2012) on the CIPRES Science Gateway V 3.3 (https://
www.phylo.org/, Miller et al. 2010). The Bayesian analy-
ses implemented the best substitution models inferred by 
PartitionFinder v1.1.1 partitioned over the different gene 
fragments, flat Dirichlet priors for base frequencies and 
substitution rate matrices and uniform priors for among-

site rate parameters. Four parallel Markov chain Monte 
Carlo (MCMC) runs of four incrementally heated (tem-
perature parameter = 0.2) chains were performed, with a 
length of 20,000,000 generations, a sampling frequency 
of 1 per 1,000 generations, and a burn-in correspond-
ing to the first 1,000,000 generations. Convergence of 
the parallel runs was confirmed by split frequency SDs 
(<0.01) and potential scale reduction factors (~1.0) for 
all model parameters, as reported by MrBayes. All analy-
ses were checked for convergence by plotting the log-
likelihood values against generation time for each run, 
using Tracer 1.5 (Rambaut and Drummond 2009). Effec-
tive sample sizes (ESS) largely over 200 were obtained 
for every parameter. Results were visualized and edited 
in FigTree 1.4.1 (Rambaut 2014).

Results

Stefania ginesi and S. satelles as currently recognized 
are recovered non-reciprocally monophyletic (Fig. 3). 
Our molecular phylogeny also reveals the occurrence of 
five candidate species (sensu Padial et al. 2010) that have 
been misidentified for more than a decade as S. ginesi 
(two candidate species) or S. satelles (three candidate 
species) (e.g., Señaris et al. 1997; Gorzula and Señaris 
1999). Preliminary morphological analyses (in progress) 
indicate a few, sometimes subtle, morphological charac-
ters allowing discrimination among these candidate spe-

Fig. 3. Phylogenetic relationships as recovered in the MrBayes analysis (concatenated dataset, 2359 bp), outgroup not shown. 
Values at each node represent Bayesian posterior probabilities; asterisks indicate values > 95%. Stefania ginesi sensu stricto, and 
S. satelles sensu stricto are highlighted in red. Relation between eye color and tepui summit surface is indicated on the right side of 
the figure. Photos PJRK.



9Amphib. Reptile Conserv. April 2016 | Volume 10 | Number 1 | e115

“Lost World” tepui summit endemic frogs, Stefania ginesi and S. satelles

cies and S. ginesi and S. satelles. Our combined results 
indicate that S. ginesi sensu stricto is likely restricted to 
its type locality, Chimantá-tepui, as we suspect that pop-
ulations from other tepuis in the Chimantá Massif that 
were not sampled in this study will prove to be distinct as 
well. As for Stefania satelles, the species is restricted to 
its type locality, Aprada-tepui.

Discussion and conservation recommendations

We assumed that misidentifications were likely due 
to a rather conserved external morphology (e.g., head 
broader than long, skin strongly granular, absence of 
prominent cranial crests) of all tepui summit species pre-
viously identified as Stefania ginesi or S. satelles. This 
conserved morphology appears to be symplesiomorphic, 
and probably the result of an allopatric non-adaptive ra-
diation (lineage diversification with minimal ecological 
diversification, see Rundell and Price 2009). It is, how-
ever, intriguing that two slightly divergent phenotypes (a 
“satelles phenotype” with brown eyes and a “ginesi phe-
notype” with blue eyes) evolved independently in each 
subclade (see Fig. 3). Interestingly, selection towards one 
of these two phenotypes seems closely associated with 
the size of the summit surface on which the species occur 
(see Fig. 3). The “ginesi phenotype” is found on large 
tepui summits (surface > 25 km2) in the central Chimantá 
Massif, whereas the “satelles phenotype” is found on 
much smaller tepui summits (surface < 5 km2) in the pe-
riphery of the core Chimantá Massif. Disentangling this 
phenomenon and the nature of the ecological constraints 
possibly involved and their influence on phenotypic tra-
jectories is beyond the scope of this paper and will be 
treated in a separate study.

Most importantly, our results have direct implica-
tions on the conservation status of the populations un-
der study. A complete taxonomic revision of the genus 
is in progress, but meanwhile we wish to emphasize the 
restricted distributions of all the populations previously 
known as Stefania ginesi or S. satelles. Our results argue 
for the upgrading of the conservation status of S. gine-
si from LC to Endangered (EN), and that of S. satelles 
from NT to EN, based on the same argument recently 
developed for other species restricted to the summit of 
one or two tepuis, e.g., Pristimantis imthurni and P. jam-
escameroni (Kok 2013b), or P. aureoventris (IUCN SSC 
Amphibian Specialist Group 2014), thus in accordance 
with criteria B1 a-b (iii) and B2 a-b (iii) of the IUCN 
Red List of Threatened Species (IUCN 2014). We indeed 
argue that (1) extents of occurrence of S. ginesi and S. 
satelles are much less than 5,000 km2 (less than 100 km2 
and five km2, respectively); (2) areas of occupancy of S. 
ginesi and S. satelles are much less than 500 km2 (less 
than 100 km2 and five km2, respectively); (3) there is an 
inferred and projected decline in the quality of habitat 
due to the effects of global warming upon tepui ecosys-
tems, with an expected 2–4 °C increase in temperature 

in the region through the next century (IPCC 2007). As 
stressed by Nogué et al. (2009) and Rödder et al. (2010), 
this rise in temperature will likely cause a decrease in 
habitat suitability for tepui biota. In addition, numerous 
anthropogenic fires in the region (Means 1995; Rull et al. 
2013, 2016), coupled with a global rise of temperature, 
may cause an up to 10% decrease in precipitation (IPCC 
2007) instigating an increase in fire range and intensity 
(Rull et al. 2013, 2016); and (4) the altitudinal range of 
Stefania ginesi and S. satelles allows no vertical migra-
tion in order to avoid these threats. As mentioned by Rull 
and Vegas-Vilarrúbia (2006), the inability to migrate to 
compensate for the climate change is a key threat to tepui 
summit biota.

There is an urgent need to gain a greater understand-
ing of species boundaries and distributions in Pantepui, 
especially in Venezuela where the threats are the highest 
due to ongoing uncontrolled anthropogenic fires (Rull 
et al. 2013, 2016). However, it is assumed that an even 
greater threat to Pantepui biota is global climate change. 
Local actions (such as stopping fires), even if necessary, 
might only have a limited impact on the long-term sur-
vival of Pantepui organisms. Conservation awareness is 
critically important in the area, notably due to the inac-
cessibility of tepui ecosystems where an out of sight, out 
of mind effect may have taken place.

This study adds to the many studies now available 
demonstrating that estimates of amphibian diversity 
based on morphology alone are often misleading. Molec-
ular data have indeed been shown to be of great help in 
detecting cryptic species (e.g., Hebert et al. 2004; Vences 
et al. 2005; Fouquet et al. 2007; Burns et al. 2008; Fou-
quet et al. 2016). Unfortunately, while everyone seems to 
agree that gaining a greater understanding of the world 
biodiversity is needed in order to prioritize biodiversity 
conservation (e.g., Wilson 2016), the task turns more and 
more often into a bureaucratic obstacle course, if not an 
impossible mission for scientists working with molecular 
data.
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