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Abstract.—Since the early 2000s, ophidiomycosis has been reported with increasing frequency and associated 
with widespread morbidity in numerous North American snake species. Ophidiomyces ophiodiicola (Oo), the 
etiologic agent of ophidiomycosis, has been detected in over 30 species throughout most of the eastern United 
States, as well as in Europe and Australia; however, it is suspected that the distribution of this pathogen may 
be underestimated due to a lack of standardized inventories. To contribute to the existing but limited data on 
ophidiomycosis in the mid-Atlantic United States, snakes were sampled for Oo at two natural areas in this 
region—one in Anne Arundel County, Maryland and one in Fairfax County, Virginia. Ophidiomyces ophiodiicola 
was detected at both study sites. Thirty-four of 61 (55.7%) samples across eight species tested positive 
for the pathogen, with the highest detection rates occurring in Nerodia sipedon (73.1%) and Pantherophis 
alleghaniensis (70%). Ophidiomyces ophiodiicola was detected in snakes with (71.4%) and without (34.6%) 
clinical signs of ophidiomycosis. These results support the need for both increased Oo monitoring throughout 
the region, and implementation of more standardized and unbiased sampling protocols.
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Introduction

Ophidiomycosis has emerged as a growing threat to 
snakes throughout much of North America (Dolinski et 
al. 2014; Allender et al. 2015; Lorch et al. 2016; Paré and 
Sigler 2016) and has been associated with widespread 
morbidity in numerous species (Guthrie et al. 2016; 
Lorch et al. 2016; Stengle 2018). The disease is attributed 
to Ophidiomyces ophiodiicola (Oo), a mycotic pathogen 
that is only known to infect snakes (Allender et al. 
2015; Lorch et al. 2016; Paré and Sigler 2016). Clinical 
manifestations of infection (see Fig. 1) typically include 
scabs, crusty scales, superficial pustules, subcutaneous 
nodules, and dysecdysis (Dolinski et al. 2014; McBride 
et al. 2015; Tetzlaff et al. 2015). Ophidiomycosis 
infections are generally chronic, but mild; however, 
severe infections with high mortality have been reported 
in several viperid species (Allender et al. 2013; Sigler et 

al. 2013; Sleeman 2013; Lorch et al. 2015, 2016; Stengle 
et al. 2018). The precise mechanisms that influence lethal 
outcomes of the disease are still unclear, but are likely 
multifaceted (Lorch et al. 2015; Guthrie et al. 2016).

Since 2006, ophidiomycosis has been increasingly 
documented, with cases of infection reported in at least 
20 states, including Maryland and Virginia (Allender et 
al. 2015; Guthrie et al. 2016; Tupper et al. 2015, 2018, 
2019). Despite growing reports of ophidiomycosis 
throughout the mid-Atlantic, systematic studies 
designed to assess its prevalence using non-incidental 
sampling methods are limited. The rising incidence of 
ophidiomycosis, coupled with habitat loss, pollution, and 
other anthropogenic stressors, poses an added challenge 
for snake conservation, underscoring the significance 
of ongoing disease monitoring (Franklinos et al. 2017; 
Kucherenko et al. 2018). The objective of this study was 
to assess the presence and prevalence of Oo at two mid-
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extraction process, a negative control was used, which 
included all elements of the extraction mixture other than 
DNA. Following methods described by Allender et al. 
(2015), 2.5 µL of eluted DNA was combined with 12.5 
µL Sso Advanced™ universal probes supermix (Bio-
Rad, Hercules, California, USA), 1.25 µL of a combined 
target-specific primer (OphioITS-F and OphioITS-R)-
probe, and water, creating a 25 µL reaction mixture. The 
DNA was amplified via qPCR using a CFX96 Touch™ 
Real-Time PCR Detection System (Bio-Rad, Hercules, 
California, USA), with the following cycling parameters: 
1 cycle at 50 °C for 2 min, 1 cycle at 95 °C for 10 min, 40 
cycles of 95 °C for 15 sec and 60 °C for 60 sec, followed 
by a final cycle at 72 °C for 10 min.

For each round of qPCR, a positive control was 
included by adding 2.5 µL of a plasmid containing Oo 
(obtained from the Wildlife Epidemiology Laboratory at 
Illinois University at Urbana-Champaign, Illinois, USA) 
to a designated well containing the 22.5 µL mixture of 
primer-probe, and water (as described above). A well was 
also included for the negative control, which contained 
only the 22.5 µL mixture, but no DNA. These controls 
were used to determine whether the reaction mixture 
was prepared accurately, and to ensure that samples 
were not contaminated during qPCR preparation. Up to 
five rounds of qPCR were performed for each sample. A 
sample was considered positive if at least three rounds 
(per sample) had a lower cycle threshold (Ct) than the 

Atlantic natural areas located in Maryland and Virginia, 
USA. The results obtained contribute toward an improved 
understanding of the distribution and prevalence of 
ophidiomycosis in the region.

Materials and Methods

Area-constrained visual encounter searches (Crump 
and Scott 1994) were used to sample for Oo in snakes 
from Huntley Meadows Park (HMP; 38°45’36.57” N, 
77°05’44.13” W; Fig. 2) in Fairfax County, Virginia, 
and at the Smithsonian Environmental Research Center 
(SERC; 38°53’17.41”N, 76°33’15.52” W; Fig. 3) in Anne 
Arundel County, Maryland, between 22 April 2018 and 
9 October 2018. Snakes were hand-captured (wearing 
sterile nitrile gloves) and visually inspected for clinical 
signs of ophidiomycosis (Allender et al. 2011; Clark et 
al. 2011). Then, using a modified protocol developed 
by Allender et al. (2016), snake skins were sampled 
with sterile dry swabs (no. MW113, Medical Wire and 
Equipment Company, Durham, North Carolina, USA) 
from all craniofacial scales and along the entire ventral 
length of the body separately, swabbing each region five 
times, taking care to swab any lesions, pustules, nodules, 
or displaced scales on snakes which showed signs of 
infection (Allender et al. 2011, 2016). Swabs were stored 
in sterile 1.5 mL microcentrifuge tubes and kept frozen 
until molecular analysis. Prior to release, each snake 
was measured, weighed, and photographed to help in 
differentiating conspecifics. Aseptic techniques were 
employed and appropriate biosecurity protocols were 
followed (see Rzadkowska et al. 2016; VHS 2016) to 
limit the transmission of Oo.

For the Oo assay, DNA was eluted from the swabs 
using the Purification of Total DNA from Animal 
Tissues Protocol (Qiagen®, Valencia, California, USA). 
To ensure samples were not contaminated during the 

Fig. 1. The ventral scales of a symptomatic Northern Black 
Racer (Coluber constrictor) infected with Ophidiomyces 
ophiodiicola. This 41 g male was captured and swabbed on 
20 May 2018 at Huntley Meadows Park. Its total length was 
123.2 cm and snout-to-vent length was 94.6 cm. Photo by Eva 
Lorentz.

Fig. 2. Location of Huntley Meadows Park (HMP) snake 
capture locations. Black markers = all samples positive; white 
markers = all samples negative; gray markers = samples either 
positive or negative.
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lowest detected standard dilution for the positive control 
(Allender et al. 2016).

Sampling sites within the study areas (indicating 
locations of positive and negative samples) were plotted 
with ESRI ArcMap (version 10.6). Snake nomenclature 
corresponds with Crother et al. (2017). Tables and 
descriptive statistics were completed with Microsoft 
Excel for Office 365 (Microsoft Corporation, Redmond, 
Washington, USA).

Results

Sixty snakes (35 from HMP and 25 from SERC) across 
nine species were captured and swabbed (Table 1). 
Northern Watersnake (Nerodia sipedon) comprised the 
largest proportion (n = 26; 43.3%) of the captures. Eastern 
Ratsnake (Pantherophis alleghaniensis; n = 10), Common 
Ribbonsnake (Thamnophis sauritus; n = 9), and Eastern 
Wormsnake (Carphophis amoenus; n = 7) were also well-
represented, comprising 16.7%, 15%, and 11% of the total 
snake sample, respectively. Northern Black Racer (Coluber 
constrictor; n = 2), Eastern Kingsnake (Lampropeltis 
getula; n = 1), Northern Ring-necked Snake (Diadophis 
punctatus; n = 1), Eastern Gartersnake (Thamnophis 
sirtalis; n = 2), and Dekay’s Brownsnake (Storeria dekayi; 
n = 2) were all sparsely represented. Ophidiomyces 
ophiodiicola was detected in 33 snakes and in a shed skin 
of a Northern Black Racer, yielding an overall detection 
rate of 55.7%. More than half of the positive samples 
(55.9%) were from a single species—Northern Watersnake. 
Of the nine species sampled, Northern Watersnake had 
the highest detection rate (73.1%), followed closely by 
Eastern Ratsnake (70%). Northern Black Racer, Eastern 
Wormsnake, and Common Ribbonsnake were positive in 
66.7%, 28.6%, and 11.1% of samples, respectively. Only 
one Eastern Kingsnake and one Northern Ring-necked 
snake were sampled, and both were positive. Dekay’s 
Brownsnake was positive in one of two samples and 
Eastern Gartersnake was the only species that did not test 
positive for Oo. Twenty-five of the 35 (71.4%) snakes 
showing clinical signs tested positive for Oo, and nine of 
the 26 (34.6%) without clinical signs were Oo positive 
(Table 1). Prevalence varied between study locations, 
with 34.6% of snakes testing positive at HMP and 84.6% 
at SERC. Of the 34 snakes testing positive, Oo was 
detected in both swabs in 18 snakes (52.9%) and in only 
one of two swabs (nine from the craniofacial swab only, 
seven from the body swab only) in 16 snakes (47.1%).

Fig. 3. Location of Smithsonian Environmental Research 
Center (SERC) snake capture locations. Black markers = all 
samples positive; white markers = all samples negative; gray 
markers = samples either positive or negative.

Prevalence (%)
Species N Positive For species Overall S/+ A/+

Eastern Wormsnake (Carphophis amoenus amoenus) 7 2 28.6 5.9 0 2
Northern Black Racer (Coluber constrictor constrictor) 3 2 66.7 5.9 2 0
Northern Ring-Necked Snake (Diadophis punctatus 
edwardsii) 1 1 100 2.9 0 1
Eastern Kingsnake (Lampropeltis getula) 1 1 100 2.9 1 0
Northern Watersnake (Nerodia sipedon sipedon) 26 19 73.1 55.9 15 4
Eastern Ratsnake (Pantherophis alleghaniensis) 10 7 70 20.6 5 2
Dekay's Brownsnake (Storeria dekayi) 2 1 50 2.9 1 0
Common Ribbonsnake (Thamnophis saurita saurita) 9 1 11.1 2.9 1 0
Eastern Gartersnake (Thamnophis sirtalis sirtalis) 2 0 0 0 0 0
Total or overall prevalence 61 34 - 55.7 25 9

Table 1. Prevalence by species. S/+ = positive with clinical signs, A/+ = positive without clinical signs.
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Discussion

Although Oo has previously been documented in 
Maryland and Virginia (Guthrie et al. 2016; Tupper et al. 
2018), this work is one of only two studies (see Guthrie 
et al. 2016) to investigate Oo in these states. In Maryland, 
observations of fungal dermatitis have been reported 
from the Smithsonian Environmental Research Center 
(SERC) since 2014 (Tupper et al. 2015), with Oo recently 
being confirmed as the etiological agent of a dermal 
infection in Northern Watersnake (Tupper et al. 2018). 
These results add four new species (Eastern Wormsnake, 
Northern Black Racer, Northern Ring-necked Snake, and 
Eastern Ratsnake) to the documented host range of this 
pathogen in Maryland, which previously included only 
Northern Watersnake (Tupper et al. 2018) and Timber 
Rattlesnake (Crotalus horridus; Tupper et al. 2019). In 
eastern Virginia, Guthrie et al. (2016) documented Oo in 
four species (all with clinical signs): Northern Watersnake 
(n = 3), Rainbow Snake (Farancia erytrogramma; n = 1), 
Northern Black Racer (n = 2), and Brown Watersnake 
(Nerodia taxispilota; n = 2). This study adds four new 
hosts to the list of Oo positive species occurring in 
Virginia: Eastern Kingsnake, Eastern Ratsnake, Dekay’s 
Brownsnake, and Common Ribbonsnake.

The overall detection rate of 57.4% is among the 
highest reported (except see McKenzie et al. 2018) 
across the eastern and midwestern United States (Smeenk 
et al. 2016; Allender et al. 2016). The prevalence of 
Oo throughout these regions appears to be highly 
variable, with detection rates as low as 0% and 4.9% in 
Ohio and Michigan, respectively (Smeenk et al. 2016; 
Allender et al. 2016), and up to nearly 62% in eastern 
Kentucky (McKenzie et al. 2018). We interpret these 
rates cautiously, however, taking into consideration the 
variation in species sampled between studies. It is still 
unclear how susceptibility and severity of infection differ 
between species (Grisnik et al. 2018), but the composition 
of species sampled in this study may partly explain the 
overall prevalence and the relatively high proportion of 
Oo positive snakes that did not show clinical signs of the 
disease.

In this study, Oo was detected in eight of the nine 
species sampled, which was not surprising given that 
each of these species has previously tested positive for 
the pathogen in the eastern and mid-western United 
States (Lorch et al. 2016; Persons et al. 2017; Grisnik 
et al. 2018; McKenzie et al. 2018). However, the small 
sample sizes in certain species made it impossible to 
assess how each of these species actually influence the 
overall detection rate. Ophidiomyces ophiodiicola was 
found to be most prevalent in Northern Watersnake, with 
a detection rate of 73%. This species represented nearly 
43% of the total sample and thus had a strong influence 
on overall prevalence (55.7%). Prior studies with similar 
proportions of aquatic species have also demonstrated 
relatively high Oo detection rates among Northern 

Watersnakes and other species with aquatic affiliations. 
However, this trend in detection may partially reflect the 
habitat preferences of the pathogen (Lorch et al. 2016; 
McKenzie et al. 2018), rather than an inherent biological 
susceptibility to the pathogen. Additional work is needed 
to better understand susceptibility to the disease.

Variability in sampling methods between studies 
should also be considered when interpreting results 
(McCoy et al. 2017; Grisnik et al. 2018; Hileman et al. 
2018; McKenzie et al. 2018). For instance, the number 
of sterile dry swab applicators used per snake has been 
shown to influence detectability of Oo, with the use of 
only one applicator greatly increasing the probability 
of obtaining false-negatives (Hileman et al. 2018). The 
results obtained here support this concept, with 47.1% of 
snakes testing positive for Oo in only one of two swabs.

Underestimation of the prevalence of Oo may also 
occur when diagnostic tests are limited only to snakes that 
present clinical manifestation of infection (see Guthrie et 
al. 2016). While clinical signs have been associated with 
a higher probability of PCR-positive results (Allender et 
al. 2016), studies have also demonstrated that anywhere 
from 6% (Bohuski et al. 2015) to 38% (Hileman et al. 
2018) of snakes without clinical signs test positive for Oo. 
The data reported here support these studies, with 26.5% 
of Oo positive snakes in this sample showing no signs of 
infection. One possible explanation is that clinical signs 
may be subtle and overlooked during inspection, because a 
snake is either in the early stages of infection or effectively 
clearing the infection through repeated sheds (Lorch et al. 
2016; Grisnik et al. 2018; Hileman et al. 2018). Detection 
without clinical signs may also reflect the absence 
of infection in a specimen altogether. Ophidiomyces 
ophiodiicola can persist as a saprobe in the soil, which 
can facilitate transmission and increase the likelihood of a 
snake encountering Oo (Allender et al. 2015; Lorch et al. 
2016). The presence of Oo on the skin, however, does not 
necessarily indicate infection. Therefore, while swabbing 
can be an effective, low-cost, and minimally invasive 
method for detecting the pathogen, it cannot be used to 
infer or imply infection status.

Results from this study confirm that Oo is present and 
relatively prevalent in both Maryland and Virginia, and 
that the presence of Oo is more often accompanied by 
clinical manifestations consistent with ophidiomycosis 
than not. The geographic distribution and host range 
of the pathogen are still largely unknown (Burbrink 
et al. 2017), and ophidiomycosis may be more widely 
distributed than documented cases suggest (USGS 2018). 
Some have proposed that biased sampling methods 
may result in underestimations of prevalence within a 
population (Grisnik et al. 2018; Hileman et al. 2018). This 
potential for inaccurate assessments highlights the need 
for more standardized sampling efforts and diagnostic 
protocols. Based on the increasing number of reports of 
ophidiomycosis throughout the eastern United States, 
we suggest increased efforts to identify and monitor 
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Oo throughout the mid-Atlantic region. Additionally, 
enhanced biosecurity protocols should be implemented 
to limit disease transmission throughout the region.
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