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Abstract.—Demography is intimately related to the evolution of the life history of a species, since it describes 
the patterns of variation in the growth, maturation, reproduction, and survival of an organism through 
populations, species, and environments. In this study the growth, survivorship, and population structure were 
evaluated for an oviparous lizard, Sceloporus spinosus from two sites, a relatively undisturbed area (UA) and 
a disturbed area (DA; zone of land-use change) within the Natural Protected Area Yagul of southern Oaxaca, 
Mexico. The results showed different relative densities between seasons (higher during the wet season than 
the dry season), but not between populations. Males and females from the UA and DA showed similar growth 
rate patterns, and both sexes reached sexual maturity at a similar body size. The highest survival rates and 
recapture probabilities were found in the UA; however, males from both populations showed higher survival 
rates than females. Overall, this study suggests that land-use changes do not seem to cause wide variation 
in the analyzed demographic characteristics of this species. This work describes and quantifies demographic 
effects on some life history characteristics of a species endemic to Mexico. We argue for the need to analyze and 
compare many capture-recapture data for a species between locations in order to obtain a better assessment 
of the variation in the life history characteristics analyzed.
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Introduction

The variation in life history characteristics of lizards is 
considered to be an outcome of phenotypic plasticity 
driven by changing environmental conditions (Stearns 
1992; Adolph and Porter 1996). Studies investigating 
demographic parameters (e.g., density, sex ratio, natality, 
growth rate, age classes) and life history (e.g., SVL at 
sexual maturity, survival, reproduction, fecundity) in 
lizards have shown that different life strategies (e.g., 
growth rate, survival) in these vertebrates have evolved 
due to environmental changes caused by habitat loss and 
by changes in land use (Dunham 1982; Stearns 1992). 
This implies that the populations of any species may 
evolve different life history strategies according to the 

characteristics of the environments that they inhabit (e.g., 
pristine or fragmented). Therefore, the conservation 
priority of populations of a widely distributed species, is 
to assess the tolerance of their life history characteristics 
to certain environmental factors (precipitation, humidity, 
radiation, pollution, deforestation, and others) that occur 
throughout the distribution of the species; therefore, this 
is a feasible method to test for changes in their fitness 
(Walkup et al. 2017). Evolution within and across species 
that inhabit fluctuating environments has resulted in 
changes of their life history strategies, such as size and 
age at sexual maturity, fecundity (clutch size), growth 
rate, and survival (Stearns 1992); and these changes 
have been found within different populations of a single 
species that is widely distributed (Dunham 1982; Cruz 
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contrasting environments, in Oaxaca, Mexico. Therefore, 
considering that land use change promotes variation in 
demographic characteristics and life histories in various 
vertebrate groups (Adolph and Porter 1996; Flatt and 
Heyland 2011), these demographic characteristics were 
expected to differ as a function of the environments 
where each population of Sceloporus spinosus occurred.

Materials and Methods

Study Area

This study was carried out at two sites in Yagul Natural 
Protected Area in the municipality of Tlacolula de 
Matamoros, Oaxaca, Mexico (Fig. 1). The municipality 
encompasses 1,076 ha, ranging in elevation from 600 
to 2,500 m. The vegetation at the site is represented by 
tropical dry forest; however, much of it has been replaced 
by crops and grazing areas. The climate is semi-warm, 
with temperatures ranging from 16 °C to 26 °C, and mean 
annual precipitation from 400 to 800 mm (INEGI 2005).

Two sites of 1 ha each were chosen for this study. 
The first site was considered the undisturbed area (UA; 
16.957922 N, -96.429953 W; 1,800 m), with a vegetation 
cover of 83% and an arboreal density of 697 individual 
trees/ha. This cover includes 80% tropical dry forest, 10% 
flood zone, 3% reedbed (Arundo donax), and 2% surface 
without vegetation (Torres-Barragán 2015). The second 
site was a disturbed area (DA; 16.959617 N, -96.450633 
W; 1,652 m; Fig. 1). This site is an open area with agave 
plant cultivation and extensive grazing areas; canopy 
cover is 1% with an arboreal density of eight individual 
trees/ha; 50% of the land is used for cultivation of agave 
plants (Agave angustifolia), 20% for induced pasture, 
10% for living fences (Prosopis, Yucca, Celtis, Acacia, 
Opuntia, and Schinus), and 20% of the surface has no 
vegetation (exposed floor; Torres-Barragán 2015).

Data Collection

Twelve sampling events were conducted at each site 
(UA and DA) from January 2014 to January 2015. Each 
sampling event was carried out over a single three-day 
period in each month at each of the two sites (for a total 
of six sampling days per month), with a sampling effort 
of three people from 0900–1800 h.

The method of mark-recapture of Lemos-Espinal 
and Ballinger (1995) and Ramírez-Bautista (1995) was 
used in this study. This method consisted of ectomization 
of phalanges (e.g., toe-clipping), a permanent marking 
technique that makes it possible to recognize every 
previously marked individual during each subsequent 
sampling event. Toe-clipping is commonly used to follow 
cohorts of lizard populations (Dunham 1978; Tinkle 
1961, 1969). More recently, Guimaraes et al. (2014) and 
Olivera-Tlahuel et al. (2017) expressed some concern 
when using this method due to observed effects on the 

et al. 2014; Pérez-Mendoza et al. 2014; Cruz-Elizalde 
and Ramírez-Bautista 2016). These variations in life 
history characteristics have been documented in several 
species that inhabit environments with different degrees 
of disturbance (Cruz et al. 2014; Cruz-Elizalde and 
Ramírez-Bautista 2016; Walkup et al. 2017). However, 
strong fragmentation of habitats by land use change, 
pollution, and global warming have adverse effects on 
these strategies, that consequently lead to population 
decline at the local level (Sinervo et al. 2010).

Due to concerns regarding the effects of environmental 
disturbances, some researchers have generated 
conservation models for various biological groups 
(e.g., birds, Escalante et al. 1998; mammals, Ceballos 
and Oliva 2005) that include significant amounts 
of information on the natural history of individual 
species. For example, Sinervo et al. (2010) described 
patterns of species decline and extinction in a diverse 
assemblage of lizard species of genus Sceloporus under 
thermoregulatory stress induced by global warming. 
Chávez (2011) and Calderón-Mandujano (2011) noted 
that land use change is another factor that has resulted 
in high levels of population decimation and extinction 
among lizards and amphibians. However, each species 
responds in different ways according to the pressures of 
their local environment (Tews et al. 2004; Suazo-Ortuño 
et al. 2007). This pattern has been documented in several 
wide-ranging species that occur in relatively pristine 
habitats as well as sites that are subject to varying 
degrees of disturbance (e.g., Sceloporus grammicus, 
Pérez-Mendoza et al. 2014; S. minor, García-Rosales et 
al. 2017; and S. variabilis, Cruz-Elizalde and Ramírez-
Bautista 2016). Therefore, considering these factors, 
herein, the effects of a pristine and a disturbed habitat 
on some life history characteristics were evaluated in 
two populations of Sceloporus spinosus (Eastern Spiny 
Lizard) in southeastern Mexico.

 Sceloporus spinosus is a species endemic to Mexico, 
and adults are of medium body size for the genus (120 
mm snout-vent length, SVL; Ramírez-Bautista et al. 
2014). The scales of the body are strongly keeled and 
mucronate. This species feeds on insects and other 
invertebrates, and it is oviparous with a clutch size of 
eight to 31 eggs and a mean of 18.5 (Valdéz-González 
and Ramírez-Bautista 2002). This lizard is found from 
Durango to Oaxaca, and inhabits arboreal and saxicolous 
landscapes (Torres-Barragán 2015) in both temperate 
and semiarid regions, at an elevation range from 1,900 to 
2,700 m (Canseco-Márquez and Gutiérrez-Mayén 2010). 
In Yagul Natural Protected Area (NPA), this species is 
distributed in a mountain range with elevations from 
1,600 to 2,000 m. So far, there is limited information 
regarding demographic aspects of this species in pristine 
and disturbed areas such as Yagul NPA. In this framework, 
the goal of this study was to compare and assess key 
demographic characteristics, such as density, growth, 
survival, and population structure of S. spinosus in two 
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behavior and health of some lizard species, and therefore, 
on survival. Although toe-clipping could affect survival, 
lizards at both sites were toe-clipped similarly, so any 
negative bias in survival estimates should apply equally 
to both sites. The SVL of each lizard was measured with 
a digital caliper (to the nearest 0.01 mm), and body mass 
with a balance (± 0.01 g).

Relative Density and Population Structure

Based on the number of captured and recaptured 
individuals from both populations during the study, 
the relative density of each population was determined 
using the equation, N = M/R, where N = number 
of unknown individuals in the population; M = the 
number of marked individuals; and R = the number 
of recaptured individuals/surface area. To determine 
the population structure for each site, size classes 
(SVL) were determined based on those used by Leyte-
Manrique et al. (2017) with Sceloporus grammicus. 
These authors related the SVL of each age category 
based on anatomical traits, yielding classification 
categories of: offspring (SVL ≤ 48 mm), juveniles 
(49–69 mm), and adults (females and males ≥ 70 mm). 
Females were considered to be adults if they contained 
eggs in the oviduct, which were identified by palpation 
of the ventral region (Galán 1997). Whereas males were 
considered to be adults when they showed the bulky 
tail base indicative of sperm production (Lozano et 
al. 2014). Relative densities of lizards were compared 

between locations and seasons by means of a Student’s 
t-test (Zar 2014).

Growth Rate

Growth rates were assessed for males and females from 
each population by considering only those lizards with 
recapture intervals greater than 30 and less than 100 days. 
Therefore, growth rate was estimated with the formula: 
GR = (SVL2 – SVL1)/days, where growth rate (GR) is 
the difference in recorded SVL between the last recapture 
(SVL2) and first capture (SVL1) divided by the number 
of days that had elapsed (Dunham 1978; Zamora-Abrego 
et al. 2012). Then, nonlinear regression models of Von 
Bertalanffy, logistic by body size (SVL), and logistic 
by body mass were used (Dunham 1978); and growth 
rates for both sexes and populations were compared. 
The first model (Von Bertalanffy) describes a pattern in 
which smaller individuals (in SVL) show faster growth 
rates than larger ones (Dunham 1978; Zamora-Abrego 
et al. 2012). In contrast, the logistic models predict 
that individuals smaller in SVL will grow moderately 
faster to reach intermediate sizes, and after reaching 
their maximum growth rate, that rate will decrease in 
a non-linear direction as size increases (Dunham 1978; 
Schoener and Schoener 1978; Zamora-Abrego et al. 
2012). The difference between the two models is that the 
maximum growth rate attained under a logistic by length 
(SVL) model is observed at early ages, while maximum 
growth rate under a logistic by body mass model will 

Fig. 1. Map of the study area. The green polygon depicts Yagul Natural Protected Area, including the two sampling sites (UA = 
undisturbed area; DA = disturbed area, land use change).
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be observed at later ages (Dunham 1978). Detailed 
descriptions of each model can be reviewed in Dunham 
(1978) and Schoener and Schoener (1978). Selection of 
the best model was based on the best fit to the observed 
growth rates for both sexes, chosen by the lowest value 
of the residual mean square (RMS) and highest values of 
coefficients of determination or correlation (R2; Dunham 
1978; Schoener and Schoener 1978).

Once selected, the models were developed with 
confidence intervals following Schoener and Schoener 
(1978) for the growth parameter (r), and the asymptotic 
(A1) was calculated by the formula:

where βj is the adjusted parameter j, θj is the parameter 
estimated βj, Sj is the asymptotic standard deviation of 
βj, F1 – α

(k,N – k) is the value F1 – α of a tail with k and N – k 
degrees of freedom, N is sample size, and k is the number 
of adjusted parameters. These confidence intervals 
provide maximum reliability for each parameter (r and 
A1) and are considered significantly different between 
sexes if they do not overlap (Schoener and Schoener 
1978). On the other hand, the residuals of the growth rate 
(removal of effect size) were used to determine by two-
way ANOVA if there were differences in the patterns of 
growth rates between factors (sexes and populations). 
The residuals are the result of the relationship between 
the SVL and the growth rate under the model with the 
best fit (Schoener and Schoener 1978). Finally, based on 
the values of the growth parameter (r) and asymptotic 
(A1) obtained from the best-fit model, together with the 
average values of SVL of offsprings at hatching (L0 = 42 
mm in SVL), the ages in days were determined for both 
males and females at which they reach sexual maturity 
(Dunham 1978; Schoener and Schoener 1978; Zamora-
Abrego et al. 2012). The growth models for both sexes 
and populations were developed with Statistica program, 
version 7.0.

Estimates of the Survival Models

Captures and recaptures of marked individuals 
allowed estimates of demographic parameters, such 
as survival (φ) and recapture (p); and both parameters 
were estimated from different models that represent 
distinct biological hypotheses of survival (Lebreton et 
al. 1992). Both φ and p can be constant (c) over time 
or vary as a function of time (t) and between sex, and 
for their assessment a general model was considered 
which allowed the determination of whether survival 
rates and recaptures were different between sexes 
and populations. This model is: φ (groups [males and 
females in two populations = four groups]*time) p 
(groups*time), and it calculates the probability that 
survival and rate of recapture are different between 
groups over different periods of time.

For developing the different models based on encounter 
histories of each individual (e.g., 100101), zero represents 
sampling when a lizard was not seen in the area, while 
1 represents those sampling events when lizards were 
marked and recaptured (Lebreton et al. 1992). Encounter 
histories were analyzed and modeled with software Mark 
6.0 (White and Burnham 1999) using the subprogram 
“only recaptures” with the goal of obtaining estimates of 
survival and recapture rates grounded in the techniques 
of maximum likelihood under the model developed by 
Cormack-Jolly-Seber (Lebreton et al. 1992). The model 
that showed the best fit to the capture-recapture data 
was the one with the lower Akaike information criterion 
(AIC) value; however, when there was a difference of 2 
between AIC values of the two models, both models were 
assumed to have approximately the same fit to the data 
(Burnham and Anderson 2002). Survival and recapture 
results are represented with confidence intervals of 95%.

Results

Relative Density and Population Structure

In the surveys, 271 individuals were marked across 
both sites (UA = 149 and DA = 122); of these, 113 were 
recaptured (73 in UA and 40 in DA; Table 1). In some 
cases, several individuals were captured as juveniles and 
then recaptured as adults; but most of the recaptures were 
adult males and females (Table 1). The relative density 
between seasons was different (t1,11 = -2.023, P = 0.05; 
wet: 6.95 ± 0.41 [4.92–10.07]; dry: 9.70 ± 1.29 [2.68–
17.21]), but not between populations (t1,11 = -0.116, P 
= 0.98; UA: 8.33 ± 0.97 [5.68–16.11]; DA: 8.33 ± 1.11 
[3.28–17.21]). The relative density for UA (both sexes 
and all age classes) was 149 individuals/ha, whereas for 
DA it was 122 individuals/ha. In UA, offspring emerged 
from July to December, but the peak hatching period was 
in September; juveniles were recorded from October to 
April, but the highest population of this age class was in 
December; adults were present throughout the year, but 
the highest numbers of captures were in April and May 
(Table 1). Offspring from DA were found from August 
to November, with peak density in August; juveniles 
appeared from October to March, with density peaking in 
December; and adults were seen from September to July, 
with the greatest densities from April to May (Table 1).

Growth Rate

The length logistic model showed the best fit to the 
growth rate data for males and females from UA; in 
contrast, the Von Bertalanffy model showed the best fit 
to the growth rate data for both males and females of DA 
(Fig. 2 and Table 2). The logistic model by length showed 
that growth rates for males (r ± EE: 0.007 ± 0.0005) and 
females (r ± EE: 0.008 ± 0.0008) from UA were similar, 
whereas the asymptotic growth curve of females (A1 ± 
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EE: 105.359 ± 3.225 mm) was slightly higher than that 
of males (A1 ± EE: 101.706 ± 1.587 mm; Table 2). On 
the other hand, for males and females from DA, the Von 
Bertalanffy model showed that male (r ± EE: 0.005 ± 
0.0008) and female (r ± EE: 0.005 ± 0.0011) growth rates 
were similar (Table 2); however, the females reached an 
asymptotic size (maximum size) that was slightly larger 
(A1 ± EE: 108.058 ± 4.139 mm) than the males (A1 ± 
EE: 103.253 ± 3.723 mm; Table 2). Average values of 
the residuals of growth rates for males and females from 
UA, obtained with both the logistic by length model and 
a two-way ANOVA, did not show significant differences 
(males: -0.001 ± 0.009; females: 0.003 ± 0.019) between 
dry (F1,29 = 0.047, P = 0.8300) and wet seasons (0.001 ± 

0.010, -0.004 ± 0.011, respectively), between sexes (F1,29 
= 0.003, P = 0.9577), or interactions between factors 
(season*sex; F1,29 = 0.116, P = 0.7358). A similar pattern 
occurred for DA, where no differences were found in 
males (-0.003 ± 0.013) and females (-0.007 ± 0.015) 
between dry and wet seasons (F1,24 = 0.975, P = 0.3333; 
males = 0.021 ± 0.009 and females = 0.015 ± 0.033), 
between sexes (F1,24 = 0.044, P = 0.8358), or interactions 
between factors (season*sex; F1,24 = 0.004, P = 0.9472).

 On the other hand, there were no differences in the 
overall growth rates of males from the two populations 
(F1,31 = 0.234, P = 0.6317), in neither dry (UA: -0.001± 
0.009; DA: -0.003±0.013) nor wet (UA: 0.001 ± 0.010; 
DA: 0.021 ± 0.009) seasons (F1,31 = 0.535, P = 0.4699); 

               
UA Offspring Juveniles Adults  
Samples Males Females Males Females Males Females Recaptures

January 0 0 1 2 1 0 0
February 0 0 3 4 2 1 1♀A
March 0 0 2 4 7 2 3♂A, 1♀, 2♀J
April 0 0 3 3 9 9 4♂A, 5♀, 2♂J
May 0 0 0 0 7 10 4♂A, 5♀A
June* 0 0 0 0 2 6 1♂A, 5♀A
July* 0 1 0 0 7 4 5♂A, 2♀A
August* 3 1 0 0 2 3 2♀, 1♂J
September* 3 2 0 0 5 1 3♂A, 1♀A, 2♂J 
October 3 1 0 1 4 3 3♂A, 2♀A, 2♂J, 1♀J 
November 4 0 3 2 6 0 5♂A, 2♂J, 1♀J
December 1 0 7 2 2 0 5♂A, 3♀A
Density (#/area) 0.0019 0.0037 0.0093  
Total 14 5 19 18 54 39 73

DA Offspring Juveniles Adults  
Samples Males Females Males Females Males Females  
January 0 1 2 2 2 2 0
February 0 0 1 0 2 1 0
March 0 0 2 2 5 3 1♂A
April 0 0 0 0 10 6 6♂A, 3♀A 
May 0 0 0 0 11 10 4♂A, 5♀A 
June* 0 0 0 0 1 5 2♀A, 1♂A
July* 0 0 0 0 4 5 5♂A, 2♀A
August* 3 4 0 0 0 0 0
September* 1 2 0 0 1 3 0
October 1 0 2 4 0 2 1♀J, 2♀A
November 1 0 4 2 0 2 1♀A, 3♂J
December 0 0 5 6 1 1 1♂A, 1♀, 2♀J
Density (#/area) 0.0013 0.0032 0.0077  
Total 6 7 16 16 37 40 40

               

Table 1. Numbers of Sceloporus spinosus individuals in each age class during each study month at Yagul Natural Protected Area. 
UA = Undisturbed area, DA = Disturbed area. * Indicates the rainy months. A = adult, J = juvenile.
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Fig. 2. Growth rate of Sceloporus spinosus. (A) Undisturbed area (UA) males, (B) Disturbed area (DA) males, (C) UA females, and 
(D) DA females. Black circles represent data points for individual lizards. Modeled relationships between growth and body sizes of 
males and females: solid lines = Von Bertalanffy, dashed lines = logistic by length, and dotted lines = logistic by mass.

Fig. 3. Means and 95% confidence intervals of the Asymptotic growth (A1) and Characteristic growth (r) parameters obtained by 
the Von Bertalanffy and logistic by length models for males and females of Sceloporus spinosus in both Disturbed area (DA) and 
Undisturbed area (UA) populations.
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therefore, the interaction term (locality*season) was not 
significant (F1,31 = 0.401, P = 0.5312). The same pattern 
was found in females, as there were no differences 
between localities (F1,22 = 0.057, P = 0.8130), or seasons 
(F1,22 = 0.124, P = 0.7284); and, therefore, the interaction 
term (locality*season) was also not significant (F1,22 = 
0.587, P = 0.4519).

Growth parameters (r and A1) were similar for 
males and females in UA and DA populations (Fig. 3); 
confirming that there is no difference between the sexes. 
In UA, the growth rate showed that males reached sexual 
maturity at SVL 85 mm at age 210 d (7 months), whereas 
females attained sexual maturity at SVL 89 mm at age 
280 d (9 months). In DA, males reached sexual maturity 
at SVL 81 mm at age 210 d, and females at SVL 85 mm 
at age 280 d.

Survival Model Estimation

To analyze survival rate (φ) and recapture (p) of S. 
spinosus in UA and DA populations, a set of models was 
developed (Table 3). The single model that described 
survival rate as varying between groups (sexes) and 
where the recapture rate was constant [Φ (sex) p(c)] was 
chosen as the best fit for both populations (Table 3A). 
Based on this model, the survival rate for males from 

UA (0.82) was higher than that of females (0.70), while 
the recapture rate was similar for both sexes (0.40; Table 
4A). In addition, the survival rate for males from DA 
(0.75) was higher than that of females (0.65), and the 
probability of recapture was higher for males (0.40) than 
for females (0.35; Table 4A). These values are lower than 
those found for UA, which suggests a higher probability 
of survival and recapture in UA than DA. On the other 
hand, survival and recapture rates by season (wet and dry) 
in UA and DA populations showed that the model with 
the best fit was Φ (c) p(season), indicating that survival 
rate is constant, and the probability of recapture varies 
between seasons (Table 3B). According to this model, the 
survival rates in both populations were higher in the dry 
(UA: 0.76, DA: 0.92) than the wet (UA: 0.54, DA: 0.49; 
Table 4B) season.

Discussion

More lizards were marked at the UA site than the DA 
site during this study. However, at both UA and DA the 
greatest numbers of adult recaptures were in April and 
May, due to the peak in reproductive activity during 
these months (Valdéz-González and Ramírez-Bautista 
2002). According to the recapture data, lizards born in 
August-September reached the minimum SVL at sexual 

           
UA Model RMS R2 A1 r

Males (n = 20)        

  Von Bertalanffy 0.029 0.730 109.480 ± 5.223 0.003 ± 0.0003

  Logistic by length 0.019 0.849 101.706 ± 1.587 0.007 ± 0.0005

  Logistic by weight 0.025 0.797 100.081 ± 1.114 0.012 ± 0.0009

           

Females (n = 13)        

  Von Bertalanffy 0.029 0.595 122.243 ± 12.423 0.003 ± 0.0007

  Logistic by length 0.019 0.736 105.359 ± 3.225 0.008 ± 0.0008

  Logistic by weight 0.023 0.687 102.482 ± 2.221 0.012 ± 0.0011
           
DA Model RMS R2 A1 r

Males (n = 15)        

  Von Bertalanffy 0.027 0.809 103.253 ± 3.723 0.005 ± 0.0008

  Logistic by length 0.035 0.756 99.762 ± 2.410 0.0099 ± 0.0010

  Logistic by weight 0.048 0.664 98.523 ± 1.995 0.0141 ± 0.0016

           

Females (n = 13)        

  Von Bertalanffy 0.030 0.625 108.058 ± 4.139 0.005 ± 0.0011

  Logistic by length 0.032 0.601 100.178 ± 3.225 0.008 ± 0.0012

  Logistic by weight 0.429 0.046 99.340 ± 3.7378 0.012 ± 0.0017

           

Table 2. Growth parameters for Sceloporus spinosus males and females from UA and DA populations obtained from each growth 
model. RMS = residual mean square, R2 = coefficient of determination, A1 = asymptotic of growth, r = parameter of growth, ± = 
standard error.



 50   Amphib. Reptile Conserv. February 2020 | Volume 14 | Number 1 | e222

Sceloporus spinosus in Oaxaca, Mexico

maturity (> 80 mm) in April-May of the following year, 
a similar pattern seen in another population of the same 
species (Valdéz-González and Ramírez-Bautista 2002). 
Recruitment of offspring, together with adult males 
and females, and a few subadults, results in population 
growth with respect to these age structures. These 
events are synchronized with an increase in ambient 
temperatures (from 20.9 °C in April to 21.2 °C in May) 
and precipitation (from 113.3 mm in June to 114.4 mm 
in May) in the region, which also coincide with high 
production of food in the environment (Dunham 1982; 
Ramírez-Bautista and Vitt 1997). 

In general, these results revealed that lizard density 
was significantly similar between populations, but 
not between seasons (higher in the wet season than in 
the dry season). The higher density of lizards found 
in the wet season could be explained by a high supply 
of the food consumed by this species. However, this 
assumption brings up additional questions regarding the 
feeding habits of other species living in sympatry with 
S. spinosus in disturbed and undisturbed environments. 
Therefore, it is necessary to investigate whether those 
sympatric species have the same possibilities of acquiring 
available resources (food and microhabitat), or if they 

display different activity schedules that allow them to 
obtain resources more efficiently. Such studies would 
certainly expand our knowledge on the natural history of 
this species, and consequently enable the development of 
more effective conservation strategies.

The growth rate models used here showed that males 
and females in both populations grow at the same rate 
and reach maximum SVL at similar sizes. These results 
were found by the logistic model by length (UA) and 
Von Bertalanffy (DA), models that are known to fit most 
growth analyses for at least some lizard species of the 
family Phrynosomatidae (Lemos-Espinal and Ballinger 
1995; Zuñiga-Vega et al. 2008; Pérez-Mendoza et al. 
2014; Ramírez-Bautista et al. 2016). The pattern of low 
growth rate variation in both populations observed in this 
study could suggest that populations of this species are 
able to inhabit areas with certain degrees of disturbance, 
as has been shown in other species of lizards analyzed 
by D’Cruze and Kumar (2011) in both disturbed and 
undisturbed environments.

On the other hand, a homologous pattern in growth 
rates for males and females in both UA and DA 
populations may be due to the similarities in SVL at birth 
and the SVL at sexual maturity. For the former (SVL at 
birth), growth rates are likely to be regulated by predation 
intensity, acting mainly on offspring and juveniles of 
both populations (Schoener 1979; Andrews 1982). This 
interpretation could be different if both demographic 
parameters (survivorship and recaptures) evaluated for 
each site had changed based on an increased number 
of recaptures. This pattern has also been observed in 
populations of S. grammicus from Central Mexico 
(Pérez-Mendoza et al. 2013, 2014).

The life history characteristics studied here for 
this species could have significant plasticity among 
its populations, and therefore, small differences in 
temperature, precipitation, and food between UA and DA 
would not have apparent effects (Valdez-González and 
Ramírez-Bautista 2002; Valencia-Limón et al. 2014). A 
similar pattern in growth rates also occurs between sexes 
and age classes in other lizard genera (e.g., Xenosaurus 
spp.; Molina-Zuluaga et al. 2013).

The low variation in SVL at sexual maturity observed 
in the growth curve within and between populations is 
partially explained by the absence of sexual dimorphism 
with respect to SVL (Valdéz-González and Ramírez-
Bautista 2002; Ramírez-Bautista et al. 2013). Walkup et 
al. (2017) pointed out that Uta stansburiana, Aspidoscelis 
marmorata, A. sexlineata, and Sceloporus consobrinus 
present generalist habits in microhabitat choice, being 
able to inhabit sites with different degrees of disturbance. 
Consequently, these species tend to present reduced 
variation in some of their demographic characteristics, 
as a measure of phenotypic plasticity towards different 
degrees of environmental disturbance.

In this study, lizards from UA were numerically more 
abundant and showed a slightly higher survival rate 

A. Models for estimation of sex and populations.

Model AIC Δi Wi K

Φ (sex) p(c) 231.98 0 0.69 12

Φ (c) p(c) 234.09 2.11 0.24 13

Φ (population) p(c) 238.22 6.25 0.03 12

Φ (population) p(sex) 240.54 8.57 0.01 13

Φ (sex) p(c) 241.68 9.71 0.01 3

Φ (c) p(sex) 242.11 10.13 0 3

Φ (population) p(population) 243.39 11.42 0 21

Φ (sex) p(sex) 243.84 11.86 0 4

B. Models for estimation of season (dry and wet) and populations.

Model AIC Δi Wi K

Φ (c) p(season) 227.02 0 0.88 3

Φ (season) p(c) 231.98 4.96 0.07 12

Φ (season) p(population) 237.17 10.16 0.01 3

Φ (c) p(c) 240.11 13.1 0 2

Φ (t) p(t) 243.39 16.38 0 21

Φ (population) p(season)  247.87 20.86 0 2

         

Table 3. Models describing survival rate (φ) and recapture (p) 
of Sceloporus spinosus males and females in UA and DA with 
the Jolly-Saber model using the Mark program. The models are 
fitted with the Mark program considering that Φ y p (probability 
of survival and recapture) can be either constant (c) or varying 
between sex (s), season (dry and wet), and population. AIC = 
Measurement of the level of adjustment and parsimony of each 
model, Δi = difference of AIC, Wi = weight of AIC, K = number 
of parameters.



 51   Amphib. Reptile Conserv. February 2020 | Volume 14 | Number 1 | e222

Torres Barragán et al.

populations of Sceloporus spinosus. This supports the 
assumption that the toe-clipping method did not impair 
the performance of individuals in both populations, 
allowing the results of this study to be comparable 
with future works. For the above, and contrary to our 
expectations, this study showed that males and females 
in both UA and DA showed similar growth rate patterns, 
with both sexes reaching sexual maturity at similar SVL 
in both populations. The results obtained here may not be 
regarded as the variation typically observed in these life 
history attributes (growth, survival, and SVL at maturity), 
since the minimal variation observed in these characters 
may indicate that they are genetically fixed components, 
as has been determined in some species of Xenosaurus 
(Zuñiga-Vega et al. 2005, 2007; Zuñiga-Vega 2011) 
and A. nebulosus (Ramírez-Bautista and Vitt 1997). 
The results of this study should be taken with caution, 
since further studies are needed to determine the effects 
of temperature, precipitation, competition, and food on 
the life-history characteristics of the species living in 
both environments. Additional studies will support more 
solid conclusions regarding the growth, survival rate, 
and size at sexual maturity across the entire distribution 
range. In order to improve these results, we also suggest 
the development of hypotheses aimed at determining 
the relative abundance of predators. Furthermore, it is 
necessary to develop elasticity and sensitivity analyses 
with larger sets of capture-recapture data to better 
comprehend the effects of environmental pressures on 
the life history characteristics of a species that is found in 
both intact environments and environments with varying 
degrees of disturbance.
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than those from DA. This suggests that relative density 
may be a measure of population variation that predicts 
the survival value for both sites. However, in some 
cases lower survival probability has been observed in 
populations with high density than in populations with 
low density (Stearns 1992; Zúñiga-Vega et al. 2008).

 Survival rates and probabilities of recapture obtained 
here for males and females were higher compared to 
those reported for Anolis nebulosus (Hernández-Salinas 
2014), Xenosaurus grandis (Zúñiga-Vega et al. 2007), and 
Sceloporus grammicus (Pérez-Mendoza et al. 2014). The 
models used in these studies considered sex, season (dry and 
wet), and populations as variables that express the greatest 
sources of variation, similar to the survival rate assessed in 
other species of the genus Sceloporus (Zuñiga-Vega et al. 
2008; Pérez-Mendoza et al. 2014). The results for survival 
obtained here were similar to those of other studies (Zuñiga-
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dry forest (Ramírez-Bautista and Vitt 1997).

Conclusions

This study found little variation regarding growth rate, 
survival, and body size at sexual maturity between 

           
A. Survival values and recapture between sexes

Undisturbed area (UA) Disturbed area (DA)

Parameters Estimation SE Parameters Estimation SE

Φ (males) 0.822 0.042 Φ (males) 0.75 0.019

p 0.402 0.051 p 0.40 0.024

Φ (females) 0.706 0.056 Φ (females) 0.65 0.061

B. Survival values and recapture between seasons 
 

Undisturbed area (UA) Disturbed area (DA)

Parameters Estimation SE Parameters Estimation SE

Φ (dry) 0.765 0.036 Φ (dry) 0.927 0.078

Φ (wet) 0.538 0.074 Φ (wet) 0.489 0.072

           

Table 4. Probability of total survival (φ) and recapture (p) for both sexes and season for UA and DA populations. SE = standard 
error.
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