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Abstract. Assessing causes of population decline has critical importance for management of 

threatened species. Stochastic patch occupancy models (SPOMs) are popular tools for understanding 

spatial and temporal dynamics of populations when presence/absence data in multiple habitat 

patches are available. We develop a Bayesian Markov chain method that extends existing SPOMs by 

focusing on past environmental changes that might have altered occupancy patterns prior to the 

beginning of data collection. We apply the method to assess causes of population decline in the 
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California red-legged frog in three creeks: in situ die-off, or residual impact of past source population 

loss. Despite having no occupancy data for the 20-30 years between the hypothetical event leading 

to population decline and the first data, we discriminate among hypotheses, finding evidence of 

increased in situ die-off in two creeks. Although the creeks have comparably many occupied 

segments, owing to different extinction–colonization dynamics, we predict an eightfold difference in 

persistence probabilities of their populations to 2030. Adding a source population leads to a greater 

predicted persistence probability than does decreasing the in situ die-off, emphasizing that reversing 

the deleterious impacts of a disturbance need not be the most efficient management strategy. We 

expect that the method will be useful for studying dynamics and evaluating management strategies 

of many species. 

 

Introduction 

Occupancy models, which consider observations of presence or absence of a species across habitat 

patches, have been used to advance ecological theory and to conserve threatened species. They 

have appeared in ecological hypothesis tests concerning metapopulations (Hanski 1994), species 

invasions (Yackulic et al. 2012), disease dynamics (Adams et al. 2010), species distributions 

(Gormley et al. 2011), population trends (With & King 1999), abiotic relationships (Cole & North 

2014), and community-level interactions (Welsh et al. 2006). 

Stochastic patch occupancy models (SPOMs; Gyllenberg & Silvestrov 1994; Hanski 1994) are a 

family of occupancy models that describe transitions between occupancy states in terms of 

extinction and colonization. SPOMs have advanced to accommodate imperfect detection, 

demographic dynamics, sparse datasets, or spatially explicit data. Some early SPOMs considered 

incidence-function methods, in which the stationary probability of occupancy is used to infer 

extinction and colonization rates (Hanski 1994; ter Braak et al. 1998), assuming they are time-
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independent. To address this oversimplification, several studies developed Markov chain models 

that permit time-varying extinction and colonization probabilities dependent on values from other 

patches (O’Hara et al. 2002; ter Braak & Etienne 2003; Moilanen 2004), and that accommodate 

imperfect detection (MacKenzie et al. 2003; Johnson et al. 2013). A recent method with 

demographic dynamics is spatially explicit and allows imperfect detection (Sutherland et al. 2014). 

Our study was motivated by the population decline of the federally threatened California red-

legged frog (Rana draytonii) and a desire to recover an R. draytonii metapopulation on Stanford 

lands. The species has experienced a 70% reduction in historical range (Hayes & Jennings 1988; 

Fisher & Shaffer 1996). On Stanford lands, R. draytonii was reported in 23 stream segments in 

1997, and only in 12 in 2012. Factors at multiple spatial scales might influence the populations: 

habitat loss (Davidson et al. 2002), predation by exotic species (Lawler et al. 1999), disease (Fisher 

et al. 2012), and climate change (Davidson et al. 2002). 

We found existing SPOM methods to be imperfectly suited to our system. Our dataset has 

missing data during the sampling period 1997-2015, but also has “missing data” predating 1997, 

when events relevant to the decline likely took place. Many current spatially implicit methods use a 

Bayesian framework and do allow years of missing data (see reviews of Royle & Dorazio 2008 and 

Bailey et al. 2014, and Fiske et al. 2011 and Kéry & Schaub 2011 for implementations), but do not 

estimate parameters for those years. Although Markov methods can infer parameters during 

missing years, they have not implemented the possibility of inferring changes in parameter values 

during the missing-data period (O’Hara et al. 2002; ter Braak & Etienne 2003; Risk et al. 2011).  

Here, we develop a Bayesian Markov chain method for inference under a novel SPOM that 

permits substantial missing data, handles imperfect detection, and explicitly models time periods 

predating sampling, allowing temporal parameter changes owing to disturbance prior to sampling. 

The method enables inference of extinction and colonization rates and detection probabilities, 
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hypothesis testing, and extinction risk prediction. First, we derive the likelihood of model 

parameters given occupancy data. Next, we incorporate prior parameter information to obtain 

posterior probabilities and credible intervals. Parameter distributions are used for probabilistic 

imputation of missing occupancy data, and for estimating future probabilities of extinction. We 

compare two causes of decline in R. draytonii that would have occurred before the sampling 

period: increased in situ die-off (e.g. due to disease or introduced predators), and source 

population loss (e.g. through habitat loss). We evaluate possible management actions and their 

impact on extinction risk. This extended example illustrates the potential of the new method for a 

variety of problems. 

 

Methods 

DATA 

From 1997 to 2015, up to two visual encounter surveys per year were completed in prespecified 

segments of three creeks known to contain California red-legged frog (Fig. 1). The creeks are often 

partially dry during the summer dry season and are continuously wet during the winter wet season. 

The proportions of a creek that have pools, riffles, and runs vary over time, shifting with flood 

events; the locations of these features also vary.  

Surveys focused on presence and absence of adult frogs, the life stage most closely linked to 

long-term population persistence in r-selected species such as R. draytonii (Biek et al. 2002; 

Vonesh & De la Cruz 2002). Summer surveys, when water levels are low, maximize detection 

probability of adult frogs and staff safety. 

We designed our model for the annual life cycle of R. draytonii. Breeding and dispersal happen 

during the wet season; breeding occurs in permanent or seasonal ponds or stream pools, then 

tadpoles metamorphose in subsequent months. Dispersal of metamorphosed frogs occurs both 
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upstream and downstream, with mean dispersal distance 50-500m (Lannoo 2005), and across 

interstitial habitats (Bulger et al. 2003). We assumed that the population was closed during 

summer (Appendix S1); therefore, surveys that did not detect R. draytonii were regarded as 

detection failures, if occupancy was detected in the same segment in other surveys of the same 

year.  

 

MODEL 

General SPOM 

In our model, a linear habitat is divided into N patches; the distance between patches i and j is 

denoted dij. In a time period t, incremented as a discrete variable, each patch is in one of two 

states: occupied or unoccupied. Because our system has an annual cycle, we consider “years” 

rather than a generic time unit. We denote by pj the per-patch detection probability of the species 

during survey j, by Ji,t the number of surveys in patch i and year t, by Yi,j,t the detected occupancy (1 

for presence, 0 for absence) in the jth survey of patch i in year t, and by Yt=(Y1,1,t, …, YN,1,t Y1,2,t, …, 

YN,JN,t,t) the vector of observations of all patches in all surveys of year t.. 

We model sequential extinction-colonization dynamics, assuming that occupancy 

measurement precedes extinction. First, patches are surveyed, providing Yt. Following Mackenzie 

et al. (2003), survey results depend on the detection probability pj and the occupancy state 

zt=(z1,t,...,zN,t). Given that the species is present (zi,t=1), the probability of observing presence in 

survey j of patch i in year t is pj, and the probability of observing absence is 1-pj. The probability of 

Yi,j,t=1 given that the species is absent (zi,t=0) is 0, and the probability of Yi,j,t=0 given species 

absence is 1. We consider surveys to be independent, so Yt has probability equal to the product of 

the probabilities of the Yi,j,t across surveys j and patches i. We henceforth assume that the pj are 
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constant and equal to p for all surveys; the framework can easily be extended to allow the 

detection probability to vary spatially and temporally. 

Extinction then occurs, representing the dry season in which some patches become empty. We 

denote by Ei the extinction probability of patch i, the probability it converts from occupied to 

unoccupied in the extinction phase of a discrete time unit (Fig. 2a). Following Hanski and 

Ovaskainen (2000), we assume extinction rates are inversely proportional to population size, and 

colonized patches instantly reach carrying capacity, Ki for patch i. Thus, Ei=e/Ki, where e is a 

global extinction parameter constant across patches; note that e but not Ei might exceed 1.  

After extinction, colonization occurs, representing the wet season. We denote by Ci,t the 

colonization probability of patch i in year t (Fig. 2a). Following Hanski and Ovaskainen (2000), we 

assume that colonization rates are proportional to the total number of migrants entering from 

occupied patches, and we assume an exponential dispersal kernel. Thus, the colonization rate of 

patch i at time t is Ci,t=c ∑j≠i exp(-αdij)Kjz’j,t, where c is the global colonization parameter, a 

constant across patches independent of i and t, α is the inverse of the mean dispersal distance of 

the species, and z’j,t is the occupancy of patch j after the extinction phase of year t. Although Kj 

values are unaffected by the extinction phase, Ci,t is indirectly affected because extinction leads to 

z’j,t=0 for some segments j, and thus decreases Ci,t. Also note that c but not Ci,t might exceed 1. 

We compute the model likelihood in Appendix S2. From Ei and Ci,t ,we compute ɸt, the 2N×2N 

transition matrix from all possible states in year t to states in year t+1, where entry ɸtkl represents 

the transition probability from state k to state l. Denoting by ɸ1997 the 1×2N probability vector of 

all 2N possible states in 1997, by qt the 2N×1 column vector whose elements correspond to the 

probabilities of observing Yt given each state, and by D(qt) the 2N ×2N diagonal matrix whose 

diagonal entries are the elements of qt (Appendix S2), the exact likelihood function of model 

parameters    given a series of detections measured from data Y1997,...,Y2016 follows (eq. S2.8): 
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Eq. 1 matches eq. 5 of Mackenzie et al. (2003), but our computation of ɸt is related to that of 

O’Hara et al. (2002) and ter Braak & Etienne (2003) instead of that from Mackenzie et al. (2003).. 

To reduce computation times when the number of segments N is large, we built an 

approximate likelihood function, denoted  ̃(  |  ,    ,   ) (eq. S5.7; Appendix S5, Fig. S8), which 

only considers the most likely occupancy states. 

 

Two hypothetical causes of population decline 

We built models corresponding to two hypothetical causes of population decline for R. draytonii: in 

situ die-off or source population loss (Fig. 2b,c). In both models, we assume that an event changed 

the model parameters in the past, before the first survey that produced occupancy data. We 

assume that parameters were constant for a long time before the event of interest, so the initial 

occupancy state has limited impact on occupancy at the time of the event. We also assume that 

parameters were constant after the event. 

Under hypothesis 1 (in situ die-off), population declines result from sudden mortality increases 

in all patches at time tD prior to the first sampling time. In situ die-off could result from disease, 

introduced predators, or reductions in habitat quality or availability. We assume that population 

sizes are equal in all patches. We label the per-patch population size before in situ die-offs KD and 

denote the subsequent size K. Because extinction and colonization are functions of population size, 

we assume that in situ die offs increase population extinction rates and decrease colonization 

rates. Appendix S3 derives the likelihood under hypothesis 1 (eq. S3.3) from the general likelihood 

(eq. 1). 
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Under hypothesis 2 (source population loss), habitat destruction or local extinction leads to 

loss of a neighboring source population, e.g., a pond not subject to seasonal disappearance, at time 

tL before the first sampling time. Stanford lands are bordered on three sides by urban 

developments that have increased in density and spatial scope over the last 50 years. We 

hypothesize that a source population of size KL was formerly near the current habitat, at distance 

dL, and that it became extinct at time tL. We assume that this source population was simply 

present and not subject to extinction/recolonization before the loss: a pond, for example. We 

assume that all patches other than the source population have the same population size. The 

difference in hypothesis 2 compared to hypothesis 1 is that the past event is localized rather than 

occurring as a global event affecting all patches similarly. Under hypothesis 2, global parameters e 

and c do not change following the source population loss, nor do the within-patch population sizes 

or extinction rates, each of which depends only on e and the population size. However, the patch 

colonization rates—which depend on dispersal from the source population—do change. The 

source population loss hypothesis encodes reduced colonization by preventing population rescue 

from the source population. 

We compute the likelihood of the two hypotheses in Appendix S3. We denote by t0 the initial 

year, and by Θh the parameters under hypothesis h. Under hypothesis 1, Θh=(KD , tD), and under 

hypothesis 2, Θh=(KL, dL, tL). The probability vector of all possible states in t0 is ɸt0. Because 

transition probabilities after the event do not depend on Θh, denoting by te the event date, tD or tL, 

we have: 

 (  ,    |     )     [∏ (  )  (  ,   )

    

    

] [∏  (  )  (  )

    

    

]      ( ) 

Eq. 2 is computed from eq. S3.3 under hypothesis 1, or from eq. S3.5 under hypothesis 2. The null 

hypothesis is a special case of hypothesis 1 with KD=1 and can be computed from eq. 2.  
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BAYESIAN PARAMETER ESTIMATION 

Estimation proceeds in two steps.  

1. Using the whole occupancy dataset, we infer the detection probability p and the unknown 

parameters shared in both hypotheses: the mean dispersal distance 1/α and the global extinction 

and colonization parameters, e and c. The Bayesian estimation uses Bayes’ theorem to obtain 

posterior distributions of the parameters given the dataset by multiplying the model likelihood (eq. 

1) with the prior distributions of model parameters (Appendix S2). The mode of the joint posterior 

distribution is then used to obtain maximum a posteriori estimates of    ̃,  ̃, and  ̃, in each creek; 

95% credible intervals (CI) use the 2.5% and 97.5% quantiles of marginal posterior distributions. In 

addition, we show in Appendix S4 how to perform missing data imputation using the posterior. 

2. We infer the unknown parameters distinctive to the two hypotheses: under hypothesis 1, 

the population size before infection KD and the infection timing tD, and under hypothesis 2, the size 

of the lost habitat KL, its distance to the creek dL, and the loss timing tL. We multiply the prior 

distribution of the parameters by the likelihood under the hypothesis (eq. 2) to obtain the 

posterior distribution of Θh (Appendix S3). Maximum a posteriori parameter estimates and CI are 

computed as in step 1. Our method provides a posterior distribution for the initial occupancy z1882; 

however, this value is not of interest, and we integrate the joint posterior for the other parameters 

over all possible values of z1882.  

Appendix S5 provides the numerical implementation of the inference method and an 

approximate method for the case of a large number of patches, which we used for San Francisquito 

Creek. We implemented the method in software MIDASPOM (Data S3).  
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Parametrization 

Model parameters and prior distributions appear in Table 1 (details in Appendices S2 and S3). The 

mean dispersal distance 1/α is unknown and assumed equal for all creeks. The detection 

probability p and the global extinction and colonization parameters e and c are also unknown and 

differ by creek. The size KD of the populations under hypothesis 1, the source population size KL 

under hypothesis 2, and the timing tD of the hypothetical increased in situ die-off and tL of the 

hypothetical source population loss, are also unknown, and we assume that events occurred 

between 1902 and 1982 (Padgett-Flohr & Hopkins 2009; Fofonoff et al. 2017; Google Historical 

Imagery). Occupancies before tD and tL are unknown, and we assume that the species was present 

in 1882 (Fellers 2005; Hayes & Jennings 1988) so that likelihood computation incorporates at least 

20 years before tD and tL. The position of the hypothetical source population under hypothesis 2 is 

unknown; we assume its distance dL to the first creek segment was between 200m and 4km. 

Elements of vector ɸ1997 correspond to possible states z1997, and their values reflect prior 

probabilities of each state in 1997; we consider a Bernoulli prior.  

All other parameters are assumed known. Patches correspond to creek segments, and 

distances dij between segment pairs are assumed to be known from geographic data. Because the 

habitat is linear, and because distances between midpoints of consecutive segments are similar 

(Data S1), we assume that consecutive segments have fixed distance d. The relative carrying 

capacities Ki are treated as known from geographic data, assuming proportionality between patch 

area and population size (Hanski 2000). As a first approximation, we assumed that 

K1=K2=...=KN=1 (Data S1). 

 

Hypothesis testing 

To quantify fit of hypotheses to data, we performed Bayesian model selection. For hypotheses i 

and j, we computed Bayes factors by numerically integrating under each hypothesis the product of 



 

 

 

This article is protected by copyright. All rights reserved. 

11 

 

the model likelihood and the prior probabilities of parameters, considering all possible parameter 

values: 

  ,  
   (     |  )

   (     |  )
 

 
∫ ∑  (  ,    |     )   (  )   (   )        

∫ ∑   (  ,    |     )   (  )   (   )        
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where i and j equal 0 under H0, 1 under H1, and 2 under H2, the likelihood is computed from eq. 2, 

and the prior probabilities from eqs. S3.7-S3.9 (Appendix S3). We interpret B as follows (Jeffreys 

1998): |log10(B)|<0.5 indicates little support for either hypothesis, 0.5<|log10(B)|<1 indicates 

substantial evidence for one hypothesis, and 1<|log10(B)| indicates strong evidence. 

 

EXTINCTION PROBABILITY UNDER MANAGEMENT SCENARIOS 

We predict future extinction probabilities in each creek under each of four management scenarios. 

1. No management. 

2. Control of local causes of mortality within every stream segment (e.g. non-native predator 

removal) to increase carrying capacity K. This scenario is equivalent to reversing the deleterious 

effects of the population decline that occurs under hypothesis 1. 

3. Habitat creation: a population of size KS is restored at distance dS from the creek. This 

scenario is equivalent to reversing the deleterious effects of the decline that occurs with source 

population loss in hypothesis 2. 

4. A combined strategy reducing local causes of mortality and creating new habitat. 
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To implement these scenarios, we performed Monte Carlo simulations from the current state 

p2015 using patch extinction and colonization probabilities Ei and Ci computed using e and c values 

sampled from their joint posterior distribution (eq. S2.13). For each creek, we recorded the 

proportion of simulations with all segments unoccupied (total extinction of the creek) from 2016 to 

2065. 

To account for the difficulty of implementing management plans, for each management 

scenario we chose parameter values that correspond to reversing some but not all effects of 

disturbance events (hypotheses 1 and 2; parameter estimates in Table S2). For scenario 2 above, 

this meant considering an increased local population size smaller than the estimated size before 

the event ( ̃       for hypothesis 1, from Fig. 4). We thus tested the impact of a small increase 

of population size (K=1 to 1.05), and a larger increase (K=1 to 1.25). For scenario 3, this meant 

considering an increased source population size smaller than the estimated size before the event 

( ̃       for hypothesis 2, from Fig. S4). We thus tested the impact of the addition of a small 

population (K=1) either near (200m) or farther from (600m) the creek. 

 

Results 

ESTIMATION OF SHARED MODEL PARAMETERS 

We estimated mean dispersal distance    ̃     m (Fig. S1), with CI [125m, 425m] (Table S2). In 

addition, we estimated that probabilities of detection are similar in Matadero and Deer Creeks (Fig. 

3a, 3c),  ̃       in Matadero (CI [0.69, 0.82]) and  ̃       in Deer (CI [0.64,0.81]), and lower in 

San Francisquito (Fig. 3e), with  ̃       (CI [0.57,0.77]). 

The extinction and colonization parameter estimates differ among creeks (Fig. 3b, 3d, 3f). In 

Matadero Creek, point estimates of both parameters are small,  ̃      ,  ̃      . The marginal 
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posterior distributions are narrow, indicating that the dataset is informative about extinction and 

colonization dynamics; e has CI [0.06, 0.24], c has CI [0.22, 0.96]. 

By contrast, point estimates in Deer Creek are large:  ̃       and  ̃      . The marginal 

posterior distributions of e (CI [0.21, 0.52]) and c are also wider (CI [0.75, 1.87]). Using an 

informative or uninformative prior for the missing data in the initial year (1998) leads to similar 

point estimates and credible intervals (Fig. S2). 

In San Francisquito Creek, the extinction point estimate is the largest of all creeks,  ̃      , 

and the colonization estimate lies between those of Matadero and Deer Creeks,  ̃      . The 

marginal posterior distributions of e and c are both moderately large (CI [0.33, 0.62] for e, (CI 

[0.43, 1.30] for c). Fig. S3 gives an assessment of the accuracy of the estimation in Fig. 3. 

 

HYPOTHESIS TESTING 

The Bayes factor strongly supports the in situ die-off hypothesis H1 in Deer Creek [Table S3; 

log10(B0,1)=-0.944; log10 (B0,2)=-0.387; log10(B1,2 )=0.558] and San Francisquito Creek 

[log10(B0,1)=-44.616; log10(B0,2)=0.087; log10(B1,2)=44.680]. In Matadero Creek, it does not 

reject the null hypothesis H0 [log10(B0,1)=0.058; log10(B0,2)=-0.011; log10(B1,2)=-0.069]. 

Accuracy of the hypothesis testing presented in Table S3 is assessed in Fig. S9.  

 

PARAMETER ESTIMATION 

For Deer Creek, the posterior probability of KD plateaus when it exceeds a threshold  ̃  of 1.45; for 

San Francisquito Creek, it is highest for    ̃       (Fig. 4). These values indicate that current 

declines in Deer and San Francisquito Creeks can respectively be explained by decreases of at least 

31% and 98% of the population size in each segment due to increased in situ die-off. The posterior 
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distribution of the event timing is relatively flat for Deer Creek, indicating that the data contain 

little information about this quantity (Fig. S6 (c)), and largest in 1982 for San Francisquito Creek 

(Fig. S6(e)).  

For Matadero Creek, because H0 was not rejected, parameter estimation under H1 is not 

relevant (Figs. S5 and S6). Parameter estimations under H2 in the creeks appear in Figs. S4 and S6. 

 

EXTINCTION PROBABILITY UNDER MANAGEMENT SCENARIOS 

The Deer Creek population is more likely to go extinct than that of Matadero Creek, having an 

eightfold higher extinction probability by 2030 (black line in Fig. 5a and 5b). The San Francisquito 

Creek population is probably already extinct since 2008 (Fig. S7). 

All management interventions decrease the extinction probability in Deer and Matadero 

Creeks. In San Francisquito Creek, only source population creation restores the population and 

lowers the future extinction probability below 1. In the three creeks, source population creation 

200m from the creek generates the lowest extinction probability. 

 

Discussion 
We have presented a method that uses temporal patch occupancy data to infer extinction and 

colonization rates and to test hypotheses using a Bayesian framework. The method tests for 

changes in parameter values that occurred before the first occupancy survey. It is able to test 

hypotheses of past disturbance and to estimate future population trajectories. 

A key innovation is that our method detects disturbances that predate data collection. Many 

spatially implicit SPOM methods (Royle & Dorazio 2008; Bailey et al. 2014) use a Bayesian 

framework, allow arbitrary missing data, and detect temporal parameter changes; however, they 
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neither detect changes before the first survey nor test explicit hypotheses concerning such 

changes. Although the spatially explicit SPOMSIM (Moilanen 2004) and the method from O’Hara et 

al. (2002) permit years of missing data, they do not allow temporal parameter changes or missing 

data years before the first survey. The spatially explicit Bayesian method from ter Braak and 

Etienne (2003) allows years of missing data prior to data collection by setting a prior for the initial 

occupancy state, but it does not implement parameter changes prior to data collection. We extend 

their framework by using the whole dataset to estimate current parameter values and the first 

year of data to estimate past values. 

 

PAST INFLUENCES ON CALIFORNIA RED-LEGGED FROGS 

Our method identified local variation in R. draytonii populations. Despite the proximity of three 

creeks, we found differences in extinction and colonization (Fig. 3). Local variation in parameter 

estimates might reflect differences in community structure, habitat quality, or disease dynamics. 

For example, nonnative predators are most abundant in San Francisquito Creek (AEL and EMC, 

unpublished data). 

 We estimated the mean dispersal distance of the species at 175m (Fig. S1). This value accords 

with movement studies in Point Reyes, California, which reported a median of 185m (Fellers & 

Kleeman 2007); note, however, that Point Reyes frogs breed in freshwater ponds rather than 

creeks.  

We compared two past population decline scenarios: in situ die-off vs. source population loss. 

We found that an in situ die-off starting between the 1960s and the early 1980s is the most likely 

explanation for decline in Deer and San Francisquito Creeks (Table S3). Several factors could 

contribute to in situ die-off; unfortunately, our model cannot disentangle disease and introduced 
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predators because these phenomena could have had similar impacts. Infection by Bd 

(Batrachochytrium dendrobatidis), a fungal pathogen, is widespread in amphibians in California 

(Padgett-Flohr & Hopkins 2009) and worldwide (Fisher et al. 2012). Bd infections were observed in 

1961 on the Stanford campus (Padgett-Flohr & Hopkins 2009), but might have begun in California 

as early as the late 1800s (Huss et al. 2013). Bullfrogs (Lithobates catesbeianus), one non-native 

predator of R. draytonii, were introduced into California around 1900 (Stebbins & McGinnis 2012), 

and signal crayfish (Pacifastacus leniusculus) were introduced in San Francisco watersheds as early 

as 1898 (Fofonoff et al. 2017). Non-native predators present in Stanford creeks, including 

mosquitofish (Gambusia affinis) (Lawler et al 1999), bullfrogs (Moyle 1973), and signal crayfish 

(Allan and Tennent 2000), have contributed to similar R. draytonii declines elsewhere in California. 

The population decline trajectory suggests extinction debt, where local extinction occurs after 

substantial delay following habitat degradation (Kuussaari et al 2009). 

 

PREDICTED DYNAMICS AND CONSERVATION 

The method predicts future persistence probabilities. Interestingly, despite similar ratios of 

extinction and colonization rates in Matadero and Deer Creeks, stochastic dynamics produce a 

greater 50-year persistence probability in Matadero Creek (Fig. 5). In Deer Creek, large estimated 

extinction and colonization rates magnify variability in occupancy. Thus, successive “bad years” 

could lead to chance extinction. In one year, only two segments were occupied in Deer Creek. With 

extinction parameter e=0.39, because extinction precedes colonization, the probability of complete 

extinction in the next year depends only on the extinction rate, equaling 0.392=0.1521. In 

Matadero Creek, however, smaller extinction and colonization parameters, and consequent lower 

occupancy variation, make successive “bad years” unlikely. For example, in 3 recent instances, 3 

segments were occupied; with e=0.12, the extinction probability was a relatively safe 
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0.123=0.001728. Note that sensitivity to “bad years” raises concerns for persistence under 

unpredictable climate change, as California has experienced a warming trend with precipitation 

deficits and increased incidence of extreme drought (Diffenbaugh et al. 2015), with consequent 

potential threats to aquatic species (Meyer et al 1999). 

Our results suggest conservation actions: a source population <200m from Matadero and Deer 

Creeks would reduce extinction risk (Fig. 5). The greatest threat is stochasticity of extinction and 

colonization; adding a source would facilitate survival by population rescue. The Stanford 

Conservation Program has pursued this management approach in a similar project, having created 

ponds that support California tiger salamander reproduction, and other similar projects have also 

observed positive results (Petranka et al 2007; Rannap et al 2009). Interestingly, the preferred 

conservation action (adding a source) is not the one that most directly reverses the most likely past 

disturbance (increased in situ die-off). Our results can prioritize management actions, as actions 

targeting Deer Creek likely give the most risk reduction for a given level of effort. 

 

EXTENSIONS 

Incorporating life-stage or demographic data, by modeling local population sizes as temporally 

varying rather than constant, could enable modeling of disturbances affecting specific life stages. It 

would also enable modeling of phenological shifts in life-history dynamics, such as differing 

dispersal by life stage. However, when population size data are unavailable, as in the frog example, 

models integrating local population dynamics are inapplicable (Sutherland et al. 2014). Another 

extension would allow patches to have different carrying capacities Ki, if estimates of Ki are 

known. This change would simply rescale expressions for the extinction and colonization rates E 

and C. 
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Our model permits nonlinear habitats and unequal patch sizes. Computations only require 

pairwise distances between populations, and could therefore be applied to many geometries. 

Scenarios beyond increased in situ die-off and source population loss can be examined: for 

example, reductions affecting only certain patches would reduce some population sizes Ki, cyclic 

droughts would periodically push certain Ki to 0, and so on. A covariate x that influences extinction 

or colonization can be accommodated by making the associated parameters in patch i at time t, ei,t 

and ci,t, functions of xi,t, for example using a logit link ei,t(xi,t)=[exp(a0+a1xi,t)]/[1+ 

exp(a0+a1xi,t)]. Posterior distributions of parameters a0 and a1 can then be inferred. 

 

CONCLUSIONS 

Our method enables assessments of influences on population persistence of complex scenarios, 

including local (e.g., adding new patches) or global actions (e.g., reducing predation or disease). It 

can both assess precise scenarios (e.g., specifying new habitat locations) and perform exploratory 

analyses (e.g., predictions across a range of possible locations). In our system, it finds that the best 

management action need not be the one that mitigates the original cause of decline. This 

observation is particularly important for management of species for which threats are hard to 

address, and suggests that alternative strategies can improve persistence. We encourage use of our 

framework for advancement of ecological theory and conservation management. 
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Table 1. Summary of model parameters.  

Variable Interpretation Rangea Value usedb Reference 

Parameters shared across hypothesesb 

P Probability of 
detection 

[0,1] Uniform 
prior 

 

None 

E global extinction 
parameter 

[0,1] Uniform 
prior 

None 

C global colonization 
parameter 

[0,1.5] Uniform 
prior 

None 

D distance between 
consecutive segments 
(meters)  

[164,256] in 
MCc; [147,249] 
in DC; 
[152,446] in 
SFC 

200m Supporting 
Information 

1/α mean annual dispersal 
distance 

[50,500] Uniform 
prior 

Bulger et al. 2003; 
Lannoo 2005; Fellers 
and Kleeman 2007 

z1997,i Occupancy state in 
patch i in 1997 

[0,1] Bernoulli 
prior 

None 

Hypothesis 1: in situ die-off 

tD timing of infection or 
increased predation 

[1902,1982] Uniform prior Padgett-Flohr and 
Hopkins 2009; 
Fofonoff et al. 2017 

KD per-patch population 
size prior to infection 

[0.1,100] Log-uniform 
prior 

None 

Hypothesis 2: source population loss 

tL timing of source 
population loss 

[1902,1982] Uniform 
prior 

Google Historical 
imageryd 

KL population size of 
extinct population 

[0.1,100] Log-uniform 
prior 

None 

dL distance to source 
population (m) 

[200,4000] Uniform 
prior 

None 

a The ranges reported correspond to the maximal and minimal values of the prior distributions 
detailed in Appendices S2 and S3. 
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b The values of parameters with priors are inferred using our Bayesian method, and distributions 
are detailed in Appendices S2 and S3. 

c MC, Matadero Creek; DC, Deer Creek; SFC, San Francisquito Creek. 

d For the timing of the source population loss, we used Google Historical Imagery to identify the 
years when the rapid expansion of human habitation in San Mateo and Santa Clara counties around 
MC, DC, and SFC occurred. 

 

List of Figures 

 

Fig. 1. Survey locations of the California red-legged frog on Stanford University lands. Each creek 

is treated as a separate linear habitat (Appendix S1): Matadero Creek, orange; Deer Creek, blue; 

San Francisquito Creek, green. Patches are numbered from upstream to downstream. Stream 

segments had mean length 202m (standard deviation 41m): 11 segments in Matadero Creek, 10 
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in Deer Creek, and 26 in San Francisquito Creek (Data S1), with missing data rates 17% in 

Matadero Creek, 22% in Deer Creek, and 13% in San Francisquito Creek (Data S2). 

 

 

Fig. 2. Schematic representation of the models. (a) General stochastic patch occupancy model 

(SPOM). Each year t is divided into extinction and colonization phases. Occupancy states at the 

end of these phases, z’i,t and zi,t+1, are hidden random variables. The observed occupancy in 

survey j of patch i in year t, Yi,j,t, depends on the detection probability p. Quantities on the arrows 

indicate probabilities. (b) Hypothesis 1: in year tD, in situ die-off (e.g., due to infection) reduced 

the population size of each patch from KD to K. (c) Hypothesis 2: in year tL, a source population of 

size KL at distance dL from the creek was lost (e.g., due to anthropogenic disturbance). The year 

considered as the initial condition in our inference is 1882. The downward arrow indicates the 

direction of flow. 
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Fig. 3. Bayesian parameter estimation of the probability of detection (p), the extinction 

parameter (e), and the colonization parameter (c). (A) Probability of detection, Matadero Creek. 

(B) Joint distribution of extinction and colonization parameters, Matadero Creek. (C) Probability of 

detection, Deer Creek. (D) Joint distribution of extinction and colonization parameters, Deer 

Creek. (E) Probability of detection, San Francisquito Creek. (F) Joint distribution of extinction and 

colonization parameters, San Francisquito Creek. In (A), (C), and (E), the gray area represents the 

prior distribution (eq. S2.12), the red area represents the posterior distribution given the 
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observed data (computed from eq. 1 for Matadero and Deer Creek, and from eq. S5.7 for San 

Francisquito Creek), and the red dotted lines represent the 95% CI. In (B), (D), and (F), shades of 

red represent the joint posterior distribution, and the black point represents the maximum a 

posteriori estimate ( ̃,  ̃). An informative prior (Bernoulli; eq. S2.10) was used for the missing data 

in the initial state of Deer Creek; see Fig. S2 for the posterior distribution under an uninformative 

prior (eq. S2.9 from Appendix S2). 

 

Fig. 4. Bayesian estimation of model parameters under the in situ die-off hypothesis (H1). (A) 

Deer Creek. (B) San Francisquito Creek. Parameter KD corresponds to the population size before 

the event increasing in situ die-off. The gray area represents the prior distribution of KD (eq. S3.7), 

and the red area represents the posterior given the observed data (computed from eq. S3.11). 

The red dashed lines represent the mode  ̃  of the posterior distribution which is used as a point 

estimate under hypothesis H1. Model parameters appear in Table 1. This figure only displays 

parameter estimates under the hypotheses with the greatest support (based on the Bayes factor 

from Table S3); see Fig. S4 and S6 for parameter estimates under the source population loss 

hypothesis (H2), which has less support in the three creeks, and Fig. S5 for parameter estimates 

under hypothesis H1 for Matadero Creek, which has less support than the null hypothesis.  
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Fig. 5. Cumulative probability of complete within-creek extinction in 50 years, computed using 

the maximum a posteriori estimates of extinction and colonization parameters. (A) Matadero 

Creek. (B) Deer Creek. (C) San Francisquito Creek. Maximum a posteriori extinction and 

colonization parameters appear in Fig. 3. The extinction probability is obtained by computing the 

transition probability from the observed state in 2016 to the state where all populations are 

extinct, in 1, 2, ..., 50 years, assuming that occupancy data are missing after 2016 (from eq. S2.13 

in Appendix S2). 


