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Abstract.—In species that lack parental care beyond nesting, the fitness of the mother depends on the 
selection of a high-quality nest site. Unfortunately, given the importance of nest site selection, anthropogenic 
habitat degradation continues to decrease the availability of high-quality nest sites. This study focuses on 
nest-site selection by a population of Endangered Wood Turtles (Glyptemys insculpta) in a disturbed site with 
a high amount of human activity and invasive plant species. Logistic regression was used to examine nest-
site microhabitat characteristics such as soil composition, moisture, temperature, slope, vegetation type and 
cover, canopy cover, and distances to water and vegetation. Wood Turtle nest site microhabitat characteristics 
were also characterized in a protected site and compared to those of the disturbed site using a series of t-tests 
and χ2 tests. Soil composition and a slight slope were the most important factors for Wood Turtle nest-site 
selection at the disturbed site. Turtles at the disturbed site preferred a high amount of sand and small gravel, 
with little or no larger gravel or clay. The disturbed site had a higher maximum temperature overall, with an 
average of 35 °C versus 28 °C at the protected site. The turtles at both sites nested in sandy habitat, while the 
nests at the protected site had higher moisture content than those at the protected site and lacked gravel. Since 
is it common for Wood Turtles to use anthropogenic habitat, identifying, protecting, and managing nesting 
sites are essential to Wood Turtle conservation efforts. To enhance the overall nesting success of these turtles 
in disturbed areas, artificial nest sites could be judiciously placed and used by the turtles. Artificial nest sites 
could be managed to improve the nesting success of this Endangered turtle species and, also, potentially 
reduce adult loss by modifying the upland movements of adult females during the nesting season.
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Introduction

Investment in parental care varies across taxa, with 
some animals watching over and defending their young 
for many years, while other animals have minimal 
interactions with their offspring after birth (Gross 2005). 
Clutton-Brock (1991) defines parental care as any type 
of parental investment in the offspring after eggs have 
been deposited or young have been born. For species 
that do not provide direct parental care to their offspring, 
strategies to increase the survival of the hatchlings may 
include allocating energy to eggs in the form of lipid 
reserves (Nagle et al. 2003; Kamel and Mrosovsky 2005) 
or selecting a high-quality nest environment (Kolbe and 
Janzen 2002). Habitat characteristics associated with 
nest sites, such as temperature (Weisrock and Janzen 

1999), can have direct effects on offspring survival and 
phenotypes (Kolbe and Janzen 2002). Because turtles 
are long-lived animals which require many years to 
reach sexual maturity and have high egg and hatchling 
mortality with no parental care beyond nesting, nest site 
selection may be important for population persistence 
since the nest site may directly influence nest success 
(Lovich et al. 1990; Congdon et al. 1993; Horne et al. 
2003). Unfortunately, given the importance of nest site 
selection by turtles, anthropogenic habitat degradation 
continues to decrease the availability of high-quality nest 
sites, which could cause turtles to delay nesting and/or 
nest in an unfavorable habitat (Walde et al. 2007). Due 
to habit losses caused by anthropogenic disturbances, 
reptiles are declining globally (Gibbons et al. 2000). 
Turtles are particularly threatened by the increasing 
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al. 2007). Furthermore, our lack of knowledge about the 
nesting ecology and reproductive behavior of this species 
hinders conservation efforts (Bury 2006; McCallum 
and McCallum 2006). The goal of this study was to 
locate and characterize Wood Turtle nesting habitat at 
two Wood Turtle occupied sites, one disturbed and one 
protected, to increase our knowledge of the usefulness of 
anthropogenic sites and better inform the management of 
these areas.

Materials and Methods

Study sites. The disturbed study site, located in the 
Susquehanna watershed, was a park used for recreation 
activities such as hiking, soccer, softball, picnics, and 
angling. The forest consisted of mixed deciduous Oak-
Maple-Birch-Sycamore (Quercus, Acer, Betula, and 
Platanus). The floodplains were mainly composed 
of Spotted Knapweed (Centaurea), Common Lady’s 
Thumbprint (Persicaria), Mugwort (Artemesia), and 
Goldenrod (Solidago). A highly invasive plant species 
native to Asia, Japanese Knotweed (Fallopia japonica), 
dominated the floodplains and forests forming dense 
stands that excluded most other vascular plants and 
shrubs. Litter invaded the Wood Turtle habitat and 
vegetation in the park was periodically mowed (A. Vlk, 
pers. obs.). On the other side of the creek, across from the 
park, was a field that was mowed periodically for hay and 
included a building supply store which provides masonry 
products to the public. Daily uses of the supply store 
include the operation of boom trucks, tractor trailers, box 
trucks, and concrete mixers.

The protected site was located in the Great Swamp 
Wildlife Management Area (WMA), Putnam County, 
Connecticut, bordering New York. This area is managed 
by the New York State Department of Environmental 
Conservation, with an emphasis on habitat preservation 
and restoration for the benefit of native species (NYS 
DEC 2021). This WMA covers 444 acres of the Great 
Swamp, which encompasses natural Wood Turtle nesting 
habitat that is monitored by the staff, and free from 
anthropogenic disturbances. 

The exact study location of each site has been omitted 
from this article to prevent illegal collection of the Wood 
Turtles, but is available upon request at the authors’ 
discretion.

Data collection. At both the disturbed and protected 
sites, Wood Turtles were captured along the shoreline in 
the spring and summer of 2017 and 2018. The individual 
adult and juvenile turtles captured were weighed, sexed 
based on plastron concavity, and aged by counting 
growth annuli on dorsal scutes (Harding and Bloomer 
1979). Measurements (± 0.01 mm) of the carapace 
and plastron lengths were taken using calipers. Turtles 
smaller than 180 mm were considered juveniles (Walde 
1998). To establish a unique identification for each turtle, 

pressures of anthropogenic disturbances (Williams 
1999). The International Union for Conservation of 
Nature (IUCN) lists 148 of the 356 turtle species as 
either Vulnerable, Endangered, or Critically Endangered 
(Turtle Conservation Coalition 2018).

This study compares Wood Turtle (Glyptemys 
insculpta) nest site selection between an anthro-
pogenically altered nesting site and a protected nesting 
site. The Wood Turtle is currently under review for 
protection under the Endangered Species Act (U.S. Fish 
and Wildlife Service, 2019) and listed as Endangered by 
the IUCN (IUCN 2016). The Wood Turtle is particularly 
vulnerable to habitat loss and fragmentation because it is 
a long-lived animal that displays low vagility and high 
site fidelity (Garber and Burger 1995). Since the Wood 
Turtle prefers open canopy forested areas, Kaufmann 
(1992) speculated that this species might benefit from the 
increased habitat openings created by humans. However, 
anthropogenically generated habitat openings are often 
the sites of other human impacts, which may reduce the 
survival of Wood Turtle eggs laid there (Saumure 2004).

Wood Turtles require a variety of habitats (Arvisais 
et al. 2004). Studies in Pennsylvania (Kaufmann 1992) 
and Ontario (Foscarini 1994) showed that Wood Turtles 
selected their habitat nonrandomly relative to availability 
(Arvisais et al. 2004). They are known as an “edge 
species” according to Kaufmann (1992), with a strong 
selection of riparian habitat within 300 m of streams 
(Arvisais et al. 2004). Wood Turtles often use forested 
areas with openings in the canopy to allow for foraging 
on herbaceous undergrowth and/or slugs (Lee 1999). 
During the reproductive season, turtles require additional 
areas of habitat. For example, gravid females travel 
hundreds of meters seeking nest sites, hatchlings migrate 
from nests to water, and males may travel in search of a 
mate (Bol 2007).

Depending on latitude, the Wood Turtle nesting 
season occurs between late May and mid-July (Arvisais 
2002). Females construct nests on sandy beaches, railway 
embankments, agricultural fields, and gravel quarries; 
selecting for well-drained, sloped, and exposed areas 
close to a water source (Harding and Bloomer 1979; 
Foscarini 1994; Walde et al. 2007). The turtles spend a 
few hours to several days exploring suitable nest sites 
(A. Vlk, pers. obs.). The time investment in finding a 
nest site indicates that females are selective about where 
they lay their eggs, likely to increase hatchling success 
(Hughes et al. 2009). Unlike some other turtles, Wood 
Turtles have genetic sex determination rather than 
temperature-dependent sex determination (Ewert and 
Nelson 1991). This suggests that females select nesting 
locations based on maximizing hatchling survival rather 
than balancing the sex ratio of the clutch (Hughes et al. 
2009). Therefore, identifying, protecting, and managing 
nesting sites are essential to Wood Turtle populations 
because female Wood Turtles are highly sensitive to 
disturbance prior to the initiation of egg laying (Walde et 
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notches were filed using a Dremel tool along the edge 
of the scutes with notch codes provided by New York 
Department of Environmental Conservation (DEC) and 
Connecticut Department of Energy and Environmental 
Protection (DEEP). Each turtle weighing at least 400 g 
was fitted with a radio transmitter (Advanced Telemetry 
Systems, Isanti, Minnesota, USA), which was glued 
with epoxy gel to the rear marginal scutes of the 
carapace. The transmitter weighed approximately 16 g 
and never exceeded 5% of body mass. All procedures 
were reviewed and approved by the SUNY Oneonta 
Institutional Animal Care and Use Committee (IACUC 
#2018-25), DEC (DEC Scientific permit #2136), and 
DEEP (DEEP Scientific permit # 1718008).

In May–August, the spring and summer active 
season of the turtles, 14 turtles at the disturbed site were 
located by radiotelemetry every other day during the 
pilot season in 2017. In 2018, 17 Wood Turtles were 
tracked. Turtles were located between 0800 and 2000 
h (most of the location events were during 0800–1400 
h). Beginning on 26 May 2018, excursions were made 
between 1700 and 2030 h to observe any nesting female 
behavior (Ernst et al. 1994; Walde et al. 2007). The first 
signs of nesting occurred on 28 May 2018 at 2000 h. The 
turtle was sniffing and throwing dirt on her carapace, 
which indicates nesting behavior (Harding and Bloomer 
1979). Because Wood Turtles are known to start nest 
activity at approximately 1700 h or later (Walde et al. 
2007), radio tracking began every day from 1200–1500 
h to locate turtle nesting grounds and avoid disturbing 
nesting females. In the evening, once nesting females 
were located, observations were made from concealed 
locations to prevent the females from abandoning their 
nests. If a Wood Turtle stayed in the nesting ground past 
2030 h, observations continued until the turtle retreated 
to the stream (Walde et al. 2007).

Eighteen Wood Turtles were tracked at the protected 
site every other day during the nesting season by one of 
the Great Swamp biologists. Known nesting sites were 
checked daily during 1900–2100 h beginning 26 May, 
while 30 May marked the beginning of the nesting 
season at this site. Once the nesting season was initiated, 
the same protocols were followed for observations at the 
disturbed and protected sites.

At both sites, after a female was done nesting, the 
turtle eggs were excavated, and microhabitat variables 
were measured (Tables 1 and 2). The eggs at the disturbed 
site were placed in vermiculite in an incubator at 28 °C, 
and were then used in another study (Janzen and Morjan 

2002), while the eggs at the protected nest site were left in 
the ground with an exclosure placed over the nest. Many 
of the nests at the unprotected site were found by digging 
in suitable Wood Turtle nesting habitat, which included 
floodplains with sand and/or small gravel present with 
little vegetation or canopy cover. Soil samples (445 g) 
were collected at approximately 10 cm depths from all 
nests to measure grain size and moisture content (Hughes 
et al. 2009). A sieve was used to separate 400 g of soil 
into three different categories of large gravel (> 5 cm), 
small gravel (< 2 mm), and sand (Table 1). Clay was 
separated from the sand by adding water to the sample, 
mixing the contents, and leaving it sit for two days to 
allow separation. The amount of soil in each category 
was expressed as a percentage. To determine moisture 
content, 45 g of the sand separated out from the soil 
sample was placed in a small tin, which was placed in an 
Isotemp Programmable Muffle Furnace 650-750 Series 
(Fisher Scientific, Dubque, Iowa, USA) for two weeks 
at 110 °C (Hughes et al. 2009). After two weeks, the soil 
samples were weighed again to determine how much 
moisture weight was lost. 

When all observed nesting activity ceased on 27 June, 
waterproof iButton (iButtonLink, LLC, Whitewater, 
Wisconsin, USA) temperature dataloggers were placed 15 
cm deep at the site of each nest, which is the approximate 
nest depth of Wood Turtles (Foscarini 1994; Walde 1998; 
Compton 1999; this study). To prevent disturbance of 
the eggs at the protected site, temperature loggers were 
placed approximately 10 cm from the clutch and 15 cm 
deep. Temperatures were recorded at 4-hour intervals 
during the incubation period until 20 August when all 
hatchlings had hatched. The dataloggers were placed in 
15-inch PCV pipes and waterproofed by cementing a 
coupler to each end of the PCV pipe. 

Other microhabitat variables recorded in a radius of 1 
m (around the nest) included: slope, canopy cover, nest 
cover, vegetation type, and distances to nearest vegetation 
and aquatic habitat (Table 2). At the disturbed site, habitat 
was measured both at the nest location and at a nearby 
randomly selected unused nest habitat with availability 
at the same place and time, based on a random compass 
bearing and a random distance selected uniformly from 
~0.3–17 m (Compton 2002; Dragon 2014).

Data Analysis

Disturbed site. To estimate the probability of Wood 
Turtles using specific nesting microhabitat in the 

Covariate Covariate descriptions
Soil composition large gravel (> 5 cm), small gravel 

(< 2 mm), sand, clay
Temperature (°C) Average, maximum 

Table 1. List and descriptions of covariates that were used in 
the first subset of Wood Turtle nesting habitat selection models.

Covariate Covariate descriptions
Vegetation bare, herbaceous, woody
Canopy open, partial, full
Vegetation nest cover none, partial, full

Table 2. List and descriptions of landscape nest covariates 
that were used in second subset of Wood Turtle nesting habitat 
selection models.
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disturbed site, logistic regression in the lme4 (Bates et al. 
2015) package in R (R Core Team 2013) was used based on 
a binary response (1 = used, 0 = random). A set of models 
were fit using maximum likelihood estimation. A total of 
16 models were constructed using a priori combinations 
of explanatory variables. The explanatory variables were 
divided into two subsets used to make models: (1) nest 
characteristics, including soil composition, moisture 
content, and temperature (Table 3); and (2) landscape 
features, including slope, canopy cover, amount of nest 
cover, type of vegetation and distances from the nearest 
vegetation and aquatic habitat (Table 4). 

Due to the small sample size of nesting turtles and the 
soil variables being intercorrelated, a Principal Component 
Analysis (PCA) was used on the soil variables to reduce 
the dimensionality. The four soil variables (large gravel, 
small gravel, sand, and clay) were grouped into two PC 
axes that explained 81% of the variation combined in soil 
composition (Table 5). The logistic regression model for 
the nest characteristics subset was constructed using 10 
paired nest locations due to the loss of two temperature 
loggers in a flash flood. The landscape model consisted 
of 12 paired nest locations. Akaike’s Information Criterion 
(AIC) was used to rank each competing model using the 
AICcmodavg package (Mazerolle 2017). The model with 
the lowest AIC score was considered the best supported 
(Burnham and Anderson 2002).

Comparisons of the disturbed and protected sites. To 
determine if nest site microhabitat characteristics differed 

between the disturbed and protected sites, a series of 
t-tests and χ2 tests were conducted in jamovi (Jamovi 
Project 2018). The statistical tests were conducted only 
using actual turtle nests. Multiple t-tests were used to 
identify differences in the variables: “temperature,” 
“slope,” “distance vegetation,” “distance water,” “soil 
composition,” and “moisture” between the disturbed 
and protected sites. The variables “distance vegetation” 
and “distance water” were log-transformed due to the 
violation of normality and equal variances. Since moisture 
and soil microhabitat variables were correlated, a second 
PCA analysis comparison was performed between the 
two sites that grouped the four soil explanatory variables 
and moisture together on habitat that was used for nesting 
(Table 6). The variables with an eigenvalue above one 
were then used in a t-test to compare soil compositions 
of the two nest sites. Chi-square tests were performed on 
the categorical variables “vegetation,” “canopy,” and “nest 
cover” to determine whether the frequency of various 
categories differed between disturbed and protected sites. 
Since multiple statistical tests were performed, Bonferroni 
correction was used to adjust the p-value to 0.003 to 
minimize type I errors.

Results

Twelve nests were observed at the disturbed nest site and 
seven at the protected nest site. The number of eggs in each 
nest ranged from one to 16 (8.3 ± 4.84) at the disturbed site 
and eight to nine at the protected site (7.67 ± 0.70). Most 

Table 3. Candidate model selection statistics for Wood Turtle nesting choice first subset. K is the number of parameters in each of 
the models. AICc is the AIC score corrected for sample size. ΔAIC is the difference in AICc between the best model and each of the 
other models. AIC wt is the probability that a given model is the best model in the candidate set. 

Model K AICc ΔAIC AIC wt
Soil PC 1 + soil PC 2 3 25.23 0.00 0.54
Soil PC 2 2 26.68 1.44 0.26
Soil PC 1 2 29.26 4.03 0.07
Average 2 29.99 4.76 0.05
Maximum temperature 2 30.61 5.38 0.04
Moisture 2 31.89 6.66 0.02
Maximum temperature + average 3 32.77 7.53 0.01
Maximum temperature + average + soil PC 1 + soil PC 2 + moisture 6 34.32 9.09 0.01

Table 4. Candidate model selection statistics for Wood Turtle nesting choice second subset. Variable definitions are as indicated in Table 3.

Model K AICc ΔAIC AIC wt
Slope degree 2 32.21 0.00 0.48
Slope degree + vegetation 4 33.25 1.04 0.29
Vegetation 3 34.81 2.60 0.13
Nest cover 2 37.59 5.38 0.03
Distance vegetation 2 37.64 5.43 0.03
Distance water 2 37.83 5.62 0.03
Canopy 4 40.40 8.19 0.01
Slope degree + vegetation + distance vegetation + canopy + nest 
cover + distance water 10 53.63 21.43 0.00
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female turtles started nest construction at approximately 
1930 h, corresponding to sunset, and completed their 
nests 2–3 hours later. Warm humid rainy days stimulated 
nesting activity from multiple turtles at the same time (A. 
Vlk, pers. obs.).

Disturbed site. In 2018, 12 Wood Turtle nest sites were 
located at the disturbed site. In 2017 and 2018, Wood 
Turtle nesting began on 28 May and ended approximately 
19 June. For the nest characteristics subset, “soil PC 
2” was the most important predictor of nesting habitat 
selection based on its inclusion in both top models. The 
best model indicated significant effects of both “soil PC 
1” (GLM: χ2

1 = 4.23, P = 0.03) and “soil PC 2” (GLM: χ2
1 

= 6.82, P = 0.009) (Table 3). This model suggested that 
the likelihood of Wood Turtles using habitat increased 
when there was a high amount of small gravel and sand 
along with lower amounts of large gravel and clay. Turtles 
were more likely to use habitat with high values of “soil 
PC 1,” which corresponded to minimal amounts of large 
gravel and a higher amount of sand in addition to small 
gravel and clay. The second-best model contained the 
explanatory variable “soil PC 2.” This model indicated 
that there was a higher probability of use when there was 
a high amount of small gravel and no clay present.

The presence of a slope, which ranged from 7–50°, 
was the most significant predictor variable of nesting 
habitat selection for the landscape subset of models 
(GLM: χ2

1= 5.63, P = 0.01) (Table 4). The use of nesting 
habitat was reduced when zero slope was present. The 
second-best model contained the explanatory variables 
“slope” and “vegetation.” Slope in combination with 
herbaceous vegetation resulted in a higher likelihood of 
Wood Turtles selecting for that particular habitat. The 
turtles were least likely to select nesting habitat with no 
vegetation or slope present.

Comparisons of Disturbed and Protected Sites

Soil composition and moisture. In the overall 
comparison between selected nest habitat at the disturbed 
and protected nest sites, soil composition and moisture 
principal component variables were significantly 
different (t = 3.72, df = 15, P = 0.002). The principal 
component variable revealed that at the protected site, 
turtles were more likely to select sandy habitat with 

a higher amount of moisture and clay and no gravel 
compared to the disturbed site. At the disturbed site, the 
nests had more small gravel and less moisture and clay.

Temperature. The maximum temperature was also 
significantly different between the disturbed and protected 
field sites (t = 7.04, df = 12, P = 0.001). Although the 
disturbed site had lower nest temperatures during the 
morning hours, there was a higher maximum temperature 
with an average of 35 °C compared to the protected site 
with an average maximum temperature of 28 °C. The 
minimum average temperatures at the disturbed and 
protected sites were 15 °C and 19 °C, respectively (t 
= -3.42, df = 12, P = 0.005), which did not reach the 
threshold for a statistically significant difference after 
Bonferroni correction. The average temperatures were 
24 °C at the disturbed site and 22 °C at the protected site 
(t = 2.70, df = 12, P = 0.019).

Landscape features. Since the amounts of canopy and 
vegetation nest cover were low at both the disturbed and 
protected sites, there was no significant difference in 
canopy cover (χ2 = 0.62, df = 1, P = 0.43) or vegetation 
nest cover (χ2 = 0.31, df = 1, P = 0.58). The turtles at both 
sites selected for bare nesting ground with no vegetation 
present (χ2 = 7.28, df = 3, P = 0.06). The average slopes 
for the nests at the disturbed and protected sites were 
13.40° and 14.17°, respectively (t = -0.16, df = 17, P = 
0.87). Distance of vegetation from each nest site averaged 
15.24 cm for the disturbed site and 22.86 cm for the 
protected site (t = -0.74, df = 14, P = 0.47). The turtles 
at both the disturbed and protected sites nested on the 
floodplains or close to a water source (t = -0.11, df = 17, 
P = 0.91). Although the maximum distance to the nearest 
water from nests was 69 m at the protected site and 24 
m at the disturbed site, the average at the protected site, 
including two outlier nests, was 20 m (± 11.16) compared 
to 4 m (± 1.4) at the disturbed site.

Discussion

Wood Turtles are known to select nesting habitat that 
is open, slightly sloped, and well-drained (Walde et al. 
2007; Hughes et al. 2009), which the results presented 
here supported. Nest site selection at the disturbed site 
was nonrandom based on microhabitat characteristics. 

Table 5. Loading matrix from a Principal Component Analysis 
(PCA) of four microhabitat variables measured at N = 10 
disturbed Wood Turtle nest sites and N = 10 random paired 
locations.

Covariate PC 1 PC 2

Large gravel -0.98 0.12

Small gravel 0.42 0.79

Sand 0.85 -0.50

Clay 0.57 0.37

Covariate PC 1 PC 2
Large gravel -0.94 0.0019
Small gravel -0.78 0.34
Sand 0.97 -0.21
Clay 0.45 -0.76
Moisture 0.70 0.58

Table 6. Loading matrix from a Principal Component Analysis 
(PCA) of five microhabitat variables measured at N = 10 
disturbed Wood Turtle nest sites and N = 7 protected Wood 
Turtle nest sites. 
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Landscape features. Wood turtles at both sites selected 
for slightly sloped habitat. Many turtle species use slope 
as an environmental nesting cue (Schwarzkopf and 
Brooks 1987; Horrocks and Scott 1991). Slope may 
reflect a change in elevation making it an important cue 
(Horrocks and Scott 1991). A change to a greater slope 
could indicate that the turtle has reached an elevation that 
increases the probability of hatching success for her nest 
(Wood and Bjorndal 2000).

At the disturbed site, 42% of the turtles selected nest 
sites with no vegetation, while 58% chose nests near 
small herbaceous plants. The most common plants the 
turtles nested next to were Spotted Knapweed (Centaurea 
stoebe) and Common Lady’s Thumbprint (Persicaria 
pensylvanica). Nesting near herbaceous vegetation may 
be advantageous if it provides a concealing structure for 
females without shading the nest (Harding and Bloomer 
1979; Hughes et al. 2009). The herbaceous root system 
may also help prevent slope erosion caused by rainfall 
(Buhlmann and Osborn 2011). Alternatively, vegetation 
can have a negative impact on the nests due to root 
invasion and reduced sunlight exposure, leading to egg 
mortality (Congdon et al. 2000; Behler and Castellano 
2005). Root invasion and shading were common problems 
at the disturbed site, especially as the vegetation grew.

Anthropogenic nest sites. It is common for Wood Turtles 
to use anthropogenic nest sites, such as agricultural fields, 
yards, clear-cuts, railway embankments, and roadsides 
(Congdon et al. 2000; Saumure et al. 2007). Although 
human-impacted nesting sites may provide appropriate 
canopy openings, this disturbed habitat can negatively 
affect the turtles (Kolbe and Janzen 2002). Nesting 
in an anthropogenic site increases the probabilities of 
nests being walked on, predation, collecting, mortality 
associated with crossing roads, shading and/or root 
invasion by invasive plant species (Garber and Burger 
1995). In addition, anthropogenic disturbances could 
cause Wood Turtles to delay nesting and/or to nest 
in unfavorable habitat since this species is extremely 
sensitive to disturbance prior to egg laying (Walde et al. 
2007). Turtle use of human impacted areas, however, 
indicates that conservation measures can be taken to 
mitigate such negative effects. Artificial nesting mounds 
could be built that enhance nesting success (Beaudry 
et al. 2010). If actively managed, these mounds could 
potentially reduce exposure to many of the common 
threats that nesting females face (Buhlmann and Osborn 
2011).

Conclusions

Because Wood Turtles are long-lived organisms with 
delayed sexual maturity, populations may require a 
long time to recover; and so conservation biologists 
seeking to manage them face a pressing challenge in 

Both disturbed and protected nest sites consisted of open 
canopy, sandy patches, and little or no vegetation.

Soil composition. The soil composition appeared to be 
one of the most important factors when selecting nest 
habitat at the disturbed site. The turtles preferred to 
nest in soil that was primarily composed of sand, with 
some small gravel and clay but limited large gravel. This 
pattern is most likely related to thermoregulation and 
drainage because sandy soils warm up more quickly in 
the sun and do not hold water as well as soils rich in 
organic substrates (Brady and Weil 2002).

At both field sites, females selected nesting areas 
based on the same microhabitat characteristics. However, 
the selected nest habitat differed in soil composition 
between the disturbed and protected sites. Due to the 
absence of random points at the protected field site, it is 
not clear whether this difference represents differences 
in nesting preferences between the two turtle populations 
or differences in soil composition between the two sites. 
While turtles in both sites nested in sandy habitats, the 
female turtles at the protected nest site selected for higher 
moisture content with no gravel.

Temperature. Although temperature was not a significant 
predictor of nest site selection in the disturbed habitat, 
other literature has shown its importance in nest selection 
in various turtle species (Compton 1999; Hewavisenthi 
and Parmenter 2002; Hughes et al. 2009). There was a 
significant difference in the maximum temperature of nest 
sites between the two sites. Overall, the disturbed site had 
warmer nest temperatures. Compton (1999) suggested that 
in the northern portion of the Wood Turtle’s range, finding 
nest sites that encourage successful hatchling incubation 
is critical. To increase development rate, the Wood Turtles 
in the northern range select for warm and variable nest 
temperatures rather than a narrow temperature range 
(Compton 1999; Hughes et al. 2009), which was seen in 
the disturbed nest site in this study. The disturbed site had 
lower nest temperatures during the morning hours as well, 
causing high temperature variation, which may promote 
shorter incubation periods (Hughes 2009). Although 
northern Wood Turtle populations are known to select 
for warm nest temperature, a maximum temperature of 
35°C at the disturbed site may potentially be harmful to 
hatchlings by decreasing their survival rate. In some 
cases, embryonic mortality of nests may increase with 
high incubation temperatures (Matsuzawa et al. 2002; 
Hawkes et al. 2007; Maulany et al. 2012). For example, 
a study found that by incubating freshwater Mary River 
Turtle (Elusor macrurus) eggs at 32 °C, hatchling 
success was lower (Micheli-Campbell et al. 2011); and 
the same was true for Chinese Three-keeled Pond Turtle 
(Chinemys reevesii) eggs exposed to temperatures above 
32 °C (Du et al. 2007).
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a world that is undergoing rapid changes (Garber and 
Burger 1995; Kolbe and Janzen 2002). Thus, efforts to 
understand what effects human impacts have on Wood 
Turtle nesting habitat and population dynamics is 
crucial. It is also important to recognize which factors 
contribute to suitable Wood Turtle nesting habitat for the 
persistence and conservation of this species (Kolbe and 
Janzen 2002). To help protect this Endangered turtle, our 
research provides data that identifies the microhabitat 
variables Wood Turtles are selecting for in a nest habitat. 
Future studies should include a “false nest” subset, i.e., 
nests constructed by the female but then abandoned. 
This might provide more evidence as to what habitat 
the female is actively selecting for and/or rejecting, 
which could improve our ability to protect or construct 
appropriate nesting habitat for this Endangered species.
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