

A well-known tool based on unstable rock: systematic review of design, effectiveness and costs of various artificial refuges for reptile conservation

1Florian Laurence*, 2Jérémie Demay, 3Olivier Scher, 4Xavier Bonnet

¹CEN Occitanie Antenne du Gard, 4 Rue de l'Abbé Louis Jeanjean 30730 Parignargues / Centre d'études biologiques de Chizé, UMR-7372, CNRS Université de La Rochelle, 405 Route de Prissé la Charrière, 79360 Villiers en Bois, France ²CEN Occitanie, Immeuble le Thèbes 26 Allée de Mycènes 34000 Montpellier ³CEN Occitanie, Immeuble le Thèbes 26 Allée de Mycènes 34000 Montpellier ⁴Centre d'études biologiques de Chizé, UMR-7372, CNRS Université de La Rochelle, 405 Route de Prissé la Charrière, 79360 Villiers en Bois, France

Abstract.—With the loss and homogenization of natural habitats, artificial wildlife refuges are important tools. Since one of the main obstacles is the cost of construction and subsequent monitoring of their effectiveness, it is essential to optimize procedures. Preferably, the technical specifications of the refuges and an assessment of their effectiveness should be available, as well as an estimate of the total cost. Using the PRISMA method and a Google Scholar search, we reviewed publications on the construction of various types of refuges (e.g. burrows, walls) for squamate reptiles, a speciose but highly endangered zoological group. Our results show that despite the successes associated with the construction of refuges, precise technical information is often lacking. The experimental approach needed to isolate key factors (e.g. refuge size *versus* ability to buffer climatic variation), to guide technical improvements and to assess overall costs, is generally lacking. While the empirical and expert-based approaches are essential, the construction of refuges could be improved by following some rules, in particular by providing the technical characteristics of the refuge, the construction and labour costs, the assessment of effectiveness (including failures) and, where possible, an experimental approach.

Keywords. Shelter, technical recommendation, habitat management, habitat restoration, squamates reptiles, PRISMA

Citation: Laurence F, Demay J, Scher O, Bonnet X. 2025. A well-known tool based on unstable rock: systematic review of design, effectiveness and costs of various artificial refuges for reptile conservation. *Amphibian & Reptile Conservation* 19(2):24–40 (e349).

Copyright: Laurence et al. 2025. This is an open access article distributed under the terms of the Creative Commons Attribution License [Attribution 4.0 International (CC BY 4.0): <https://creativecommons.org/licenses/by/4.0/>], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The official and authorized publication credit sources, which will be duly enforced, are as follows: official journal title *Amphibian & Reptile Conservation*; official journal website: amphibian-reptile-conservation.org.

Accepted: 01 June 2025; **Published:** 10 December 2025

Introduction

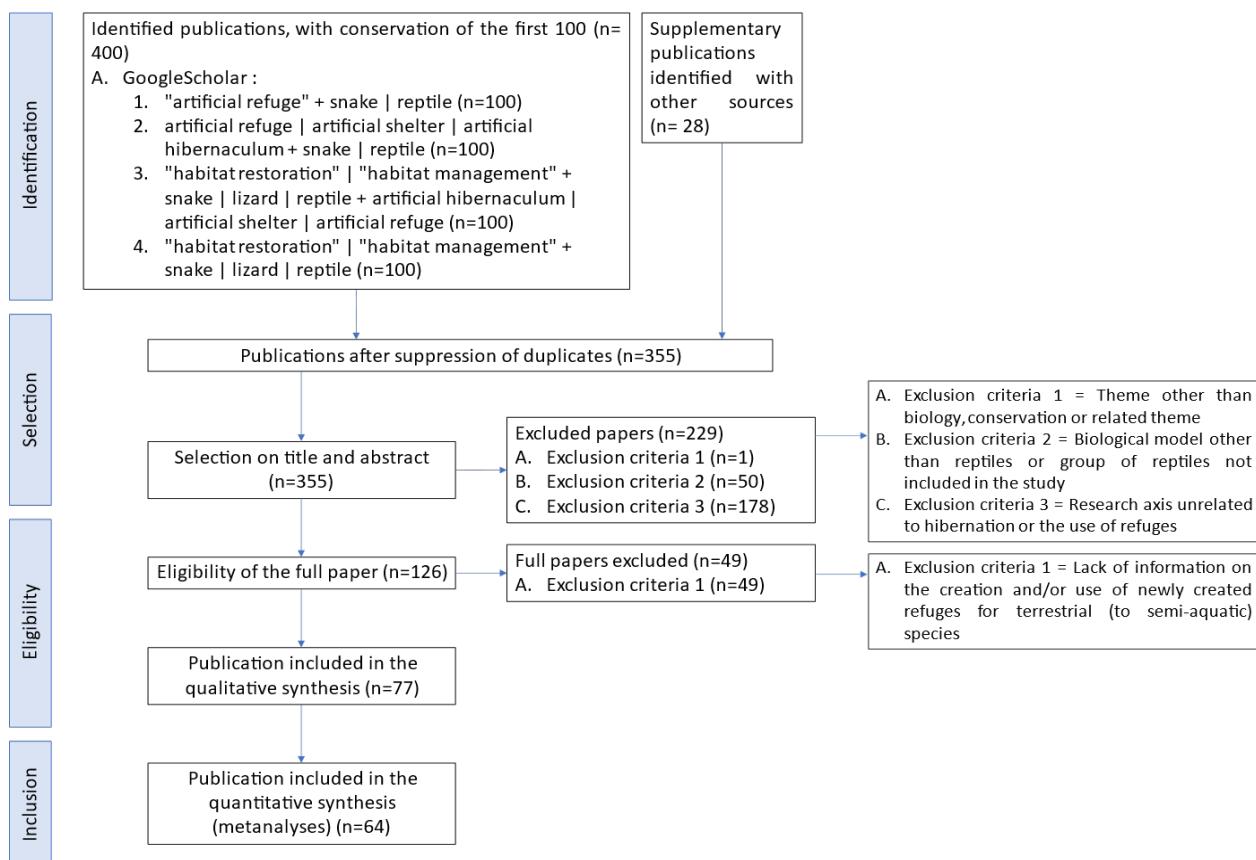
The loss of natural habitats due to increasing urbanisation, intensive agriculture and infrastructure development is a major threat to terrestrial wildlife (Hanski, 2011; Newbold et al., 2016). Governments have responded with a range of measures, including the establishment of protected areas. In addition, the destruction and alteration of natural habitats is regulated by laws that attempt to limit their extent and impose obligations to restore or compensate for ecosystems altered by human activities when it is impossible to avoid impacts (Gann et al., 2019). However, the effectiveness and surface area of protected areas can still be improved, while ecosystem restoration and rewilding, despite significant

successes, still face conceptual and technical challenges (Carver et al., 2021; Gann et al., 2019; Li et al., 2024; Torres et al., 2018). The effectiveness of restoration or compensation measures is often difficult to assess due to a lack of experimental approach and long-term monitoring. It is therefore important to identify operational elements that can be improved. Beyond general principles and recommendations that are central to achieving biodiversity conservation goals, smaller-scale goals provide basic elements. In this review, we consider one such basic element, the construction of refuges for squamate reptiles, which represent more than 12,000 species (Uetz et al., 2024). Reptiles are in steep decline worldwide (Böhm et al., 2013; Reading et al., 2010; Santos et al., 2022; Todd et al., 2009), and it is

Correspondence. *florian.laurence@cen-occitanie.org

vital that we refine our approaches and techniques to help the remaining populations.

Building wildlife refuges is a widely used restoration tool for different taxa, such as birds or bats (Keppers et al., 2008; Mering and Chambers, 2014; Rueegger, 2016). Although the benefits are generally clear, all potential impacts must be considered, as artificial refuges can have negative effects. For example, they can act as ecological traps (Zhang et al., 2023). Squamates are particularly dependent on the availability of refuges. Indeed, the fact that these organisms are ectothermic has two important consequences. First, their low metabolic requirements are associated with long periods of low activity. Individuals remain hidden in buffered refuges, especially when environmental conditions are unfavourable or when it is in their interest to limit their movements, *e.g.* during digestion, moulting, wound healing, egg incubation (Bonnet & Brischoux 2019; Shin et al., 2021; Siers et al., 2018). Second, their metabolism is regulated by thermal gradients, and cool refuges are as important for thermoregulation as areas exposed to the sun (Goode et al., 2004; Regal, 1967). The same reasoning applies to moisture conditions (Chukwuka et al., 2020). Many studies have focused on the importance of refuges in reptiles, for example to cope with seasonal or daily variations in climatic conditions or to limit predation pressure (Lelièvre et al., 2010; Pearson et al., 2005; Turner et al., 2024; Whitaker and Shine, 2003).


Inspired by these findings, the construction of artificial refuges (*e.g.* burrows, rock or wood piles) has been successfully used to compensate for the artificialisation and homogenisation of habitats, as well as to restore degraded habitats, caused, for example, by intensive agriculture or lack of forest management (Canós-Burguete et al., 2023). They have also been widely proposed or recommended to compensate the destruction of protected species and their habitats. In particular, they have been used to promote reproduction, provide egg-laying, hibernation and aestivation sites (Arida and Bull, 2008; Bruckerhoff et al., 2021; Choquette et al., 2024; Croak et al., 2010; Gillingham and Carpenter, 1978; Grillet et al., 2010; Shine and Bonnet, 2009; Thierry et al., 2009; Whiting and Booth, 2012; Zappalorti and Reinert, 1994). In practice, however, lack of funding is one of the main barriers to ecological restoration (Cortina-Segarra et al., 2021). Measuring the costs and benefits of each element of ecological restoration is therefore central to optimising action on the ground (Choquette et al., 2024; Pike, 2016). This is particularly true for well-buffered hence large reptile refuges that are essential for reproduction (Shine and Bonnet, 2009). It is then important to estimate all construction costs, including land acquisition, materials (*e.g.* rock, sand, organic matter, slabs), machinery (*e.g.* dump trucks, excavators) and, most importantly, the manpower required to manage the project and construct the refuges (Whiting and Booth, 2012). This is in addition to the field work, and associated costs, of

monitoring the environmental conditions of the refuges (*e.g.* temperature and humidity loggers) and the animals (*e.g.* mark recapture surveys and/or radio tracking), which are necessary to assess the effectiveness of the interventions. Setting aside cost considerations, long-term monitoring is rarely addressed after the creation of artificial refuges. This makes accurately assessing the value of such interventions difficult.

An experimental approach in the field is particularly useful for optimising the construction of refuges, especially large ones, which are essential for aestivation, hibernation and reproduction (Madani et al., 2023; Pike, 2016; Thierry et al., 2009). The influence of a limited number of key factors, such as refuge size or density of refuges, can then be assessed in the least ambiguous way (Hurlbert, 1984). The experimental approach is particularly recommended when the proposed construction involves significant costs, novel techniques and when it is necessary to favour certain species while limiting competing species (Deso and Reynier, 2024; Langkilde and Shine, 2004). Although various types of refuges have been tested, to our knowledge there is no review that approaches the construction from a practical and operational perspective, including costs and the experimental approach. We conducted a systematic review of the literature, focusing on: 1) the accuracy of the description of artificial refuges, taking into account the experimental approach and the assessment of their effectiveness; 2) the costs of constructing and monitoring artificial refuges. To organise the review, we considered the main taxa of target species and their life style (*e.g.* terrestrial, fossorial).

Materials & Methods

A systematic literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology (Moher et al., 2009). The literature was searched using Google Scholar on 19 November 2024 and 21 January 2025. This database was used for this capacity to capture grey literature (*e.g.* non-academic reports), a key issue in this study. As our first search with the keyword “refuge | shelter + reptile” yielded >90,000 items, mostly related to the use of natural refuges for a wide range of taxa or for bioclimatic issues, we refined our keyword selection by adding “artificial”. Only English keywords were used to cover the international literature, including non-English references. No data range was applied. Keywords and their combinations are presented in Figure 1 and Appendix 1 (*e.g.* “artificial refuge | artificial shelter | artificial hibernaculum + snake | reptile | lizard”). For each search, the first 100 results were retained and duplicates were removed. The bibliographic section of relevant references (*e.g.* Boscarino-Gaetano et al., 2024; Liberman et al., 2024; Watchorn et al., 2022) nest boxes, chainsaw hollows, artificial burrows, and artificial hibernacula have all been successfully

Fig. 1: Results of the PRISMA methodology.

implemented to improve species survival in human-modified and fragmented landscapes. As the global shift towards renewable energy sources continues to rise, the development of photovoltaic systems is growing exponentially. Large-scale renewable projects, such as photovoltaic solar farms have large space requirements and thus have the potential to displace local wildlife. We discuss the feasibility of 'conservoltaic systems' – photovoltaic systems that incorporate elements tailored specifically to enhance wildlife habitat suitability and species conservation. Artificial habitat structures can potentially lessen the impacts of industrial development (e.g., photovoltaic solar farms and the textbook 'Reptile Ecology and Conservation' (Dodd, 2016) were examined as additional sources. Important studies or reports may have been missed. However, it is unlikely that any key studies were missed, as they would probably have been cited in the bibliographies of the recent reviews and articles we consulted.

The first selection steps allowed excluding items unrelated to conservation, biology or reptiles. Then, an important selection criterion relates to the definition of a refuge/shelter (refuge therein), which includes natural (e.g. stone), temporary (e.g. a bush) and built (e.g. abandoned buildings) refuges. Although all refuges, whether natural or constructed, are important sources of inspiration for refuge design, we have concentrated here mainly on studies that present the construction of refuges

for conservation purposes. We have retained the definition of 'refuge' as a structure that protects individuals from multiple stressors over a potentially long period of time (Boon et al. 2023). We have expanded it to include other functions (e.g. digestion, resting, hibernation) and thus consider structures with thermal and hydric buffering capacity against important climatic fluctuations (Brown et al., 1974; Macartney et al., 1989). Thus, we excluded studies that relied on the use of artificial cover (e.g. slabs) or other light devices for censuses or monitoring, which offer limited buffering capacity. These lightweight artificial refuges protect individuals from predators while allowing them to thermoregulate as if exposed to the sun, thus increasing the likelihood of detecting individuals (Billy et al., 2024). However, their poor ability to buffer climatic variations means that they are unable to fulfil the role of 'deep' refuges such as burrows, crevices, large hollow trees, etc. They are avoided by reptiles during periods of extreme heat or cold, or for incubating eggs, for example. While lightweight artificial refuges can be beneficial to reptiles and may be considered as valuable enhancements in certain contexts, we did not consider the few habitat improvement studies that were too vaguely described and difficult to optimize, such as the addition of coarse woody debris (Manning et al., 2013; Palmer et al., 2022; Shoo et al., 2014). Furthermore, the use of these types of lightweight artificial refuges was the subject of a recent review in which only 12 out of 490

Table 1: Summary of the number of studies identified on the creation of artificial shelters for the conservation of reptiles. The table is organised according to major taxonomic groups and lifestyle. The sign 'X' means that the box is impossible (e.g. there is no fully aquatic gecko); the sign '?' indicates boxes for which there are doubts (e.g. some species are difficult to classify). The numbers in brackets indicate the number of species.

TAXON	TERRESTRIAL	SEMI-FOSSE	SEMI-ARBOREAL	SEMI-AQUATIC	FOSSE	ARBOREAL	FULLY-AQUATIC
<i>Gekkota</i> (1,678)	6	0	2	0	X	0	X
<i>Scincoidea</i> (1,768)	13	0	0	0	?	?	X
<i>Lacertoidea</i> (589)	19	0	0	0	?	?	X
<i>Serpentes</i> (4,145)	24 (1,400)	3 (603)	0 (396)	4 (318)	0 (821)	0 (349)	0 (64)
<i>Anguimorpha</i> (226)	8	0	0	0	0	X	X
<i>Iguania</i> (1,692)	1	0	0	0	X	0	X

studies addressed reptile habitat enhancement (Liberman et al., 2024).

In the following steps, we recorded the type of literature (scientific or grey), the species (or group of species) studied, the technical information available (e.g. construction material, refuge size and density) and the occurrence of the experimental approach (Supplementary material 2 & 3). We have summarized the information in Table 1. To take into account the diversity of reptiles, we used a simplified taxonomy as an entry (Simões and Pyron 2021). We also took into account the lifestyle of the species (Fosseries et al., 2024). Impossible cells, e.g. only snakes include truly aquatic species where individuals never venture ashore, and unclear cells were indicated. The number of species for each taxon was given (Uetz et al., 2024), in addition for snakes the number of species per lifestyle was also given (Fosseries et al. 2024).

Results

PRISMA: Of the 355 articles extracted in the initial stages, the selection process resulted in a final pool of 77 items, 78% (N=60) scientific and 22% (N=17) grey literature (Figure 1, Supplementary material 1). Fifty provided guidance and prescriptions for the creation of artificial refuges (Table 1). The number of items per cell was small and many cells were empty. Even among the well-represented *Serpentes* suborder (comprising 4,145 species), the 31 items were limited to terrestrial, semi-fossilorial, and semi-aquatic lifestyles, leaving four cells empty. The superfamily *Lacertoida* (19 items) was represented by terrestrial species only. The *Iguania* suborder was the least represented, with only one terrestrial species (*Cyclura lewisi*).

Technical characteristics of the refuges: Out of fifty items providing technical information, six types of characteristics were identified, but some information was inferred rather than clearly stated. 1) season of creation (20% of the items, N=10); 2) refuge on the ground *versus* (partially) underground (100%, N=50); 3) depth, where appropriate (55%, N=11); 4) surface of the refuge (26%, N=13); 5) materials used for construction (96%, N=48); 6) additional recommendations as exposure to sun or protection from flooding (36%, N=18).

The characteristics were also influenced by the ecological purpose of the refuges. Large refuges (>10m²) were often designed for hibernation or aestivation, they

represented 52% (N=26) of the items. Other refuges were designed to meet specific needs, such as dependence on saxicolous or fossorial habits; these included flat stones and/or slabs (18%, N=9) or galleries and underground chambers (16%, N=8). Alternative design was designed for specific approaches and species, mostly within lab conditions (14%, N=7).

Monitoring: Colonization and occupation have been assessed within 32 studies (64%) using presence/absence monitoring (69%, N=22), capture-mark-recapture (CMR) (25%; N=8) and radio tracking (6%, N=2). Installing tubes throughout the refuge allowed monitoring of the occupancy of the central cavity (2%, N=1) and monitoring temperature and humidity (8%, N=4). Monitoring was typically limited to the colonization of artificial refuges by a target species, with record of natural colonisation and use (87%, N=28), but has rarely been designed to assess population or community consequences (Grillet et al. 2010; Croak et al., 2013; Davis and Theimer, 2003; Madani et al., 2023).

Costs: six items (12%) provided construction costs and 1 item (2%) labour costs.

Experimental approach: 12 items were based on experiments, 8 in the field and 4 in captivity. The studies in question tested several factors: type of refuge (92%, N=11), difference between habitats (17%, N=2), preference between natural and artificial refuges (17%, N=2), interaction of artificial refuge with environmental factors (8%, N=1) and predator control (8%, N=1). Most were conducted on small lizards (83%, N=10). Comparisons of these parameters were made between artificial and natural refuges understand their impact (Ebrahimi et al., 2012).

Comprehensive information: one reference provided detailed comprehensive information for overwintering refuges, including all costs (Choquette et al., 2024); although the experimental approach was not undertaken.

Discussion

The creation of artificial refuges may not be necessary for species that are entirely pelagic (e.g. *Hydrophis platurus*), arboreal (e.g. *Corallus* sp.) or sand-dwelling (e.g. *Eryx jayakari*). This probably explains the blank

cells in Table 1 that correspond to specific lifestyles. In these cases, other conservation measures could be proposed, such as habitat restoration or protection. The possible role of other types of refuges for truly marine non-pelagic species (e.g., artificial reef wrecks for marine snakes such as *Aipysurus laevis*), has not been well documented and remains questionable. For most species, however, the creation of refuges (including lightweight) is likely to have a positive effect. The case of grass snake (*Natrix natrix*) populations in Sweden illustrates the importance of artificial structures. The abandonment of traditional farming practices has led to a drastic reduction in the number of manure heaps, resulting in a decline in the number of snakes, which no longer have egg-laying sites (Löwenborg et al., 2012). However, while numerous studies have demonstrated the importance of natural or artificial refuges for squamates, the benefits of constructing artificial refuges have only been documented for a small number of species. Furthermore, there are gaps across species and lifestyles. For example, only one case has been found for the Iguania group, which includes around 1700 species. The groups most represented in this review are those that are most widely studied in general, resulting in a bias toward species from temperate zones.

It should be useful to list the main benefits of natural or artificial refuges, but this step is barely present (Boscarino-Gaetano et al., 2024; Cowan et al., 2021). Monitoring of new artificial refuge is scarce among reviewed literature, with only few references presenting relevant surveys to assess their true effect (e.g. using CMR or radio tracking). Studies have documented positive outcomes such as the use of artificial hibernation or breeding sites by snakes and lizards (Gillingham and Carpenter, 1978; Shin et al., 2021; Zappalorti and Reinert, 1994). Artificial refuges can contribute to population maintenance, particularly by improving survival or recruitment (Croak et al., 2010, 2013; Grillet et al., 2010; Bruckerhoff et al., 2021; Davis and Theimer, 2003). However, most interventions have not been monitored long enough (e.g. only part of the year or of species cycle) to ascertain benefits. In addition, the lack of studies reporting failures limits the ability to avoid unnecessary construction or errors. Without this knowledge, it is difficult to guide regulatory requirements or propose truly relevant projects. While it is important to use field studies as a basis for habitat improvement or restoration, and to better understand the causes and pressures on species, systematic approach to shelter construction has the potential to improve the conservation toolbox. This could also help to determine whether and to what extent shelter deficit is a real limiting factor. Broad or empirical approaches have their limitations, particularly when there are gaps in the precise technical description of refuge construction. This review therefore emphasizes on the technical data needed by decision-makers, managers and conservationists who have to make decisions. Some of the limitations are discussed below.

Among squamates, there is considerable geographical variation among populations, including in habitat use, and therefore potentially in refuge types (Chandler et al., 2022). This variability may limit the transferability of artificial refuges. For example, refuge boxes buried in the sand and connected to the outside by calibrated plastic pipes are excellent refuges for the ocellated lizard (*Timon lepidus*) in the Atlantic dunes, but not necessarily in the Mediterranean limestone scrublands where most populations are found (Grillet et al., 2010). Ecological differences between closely related species should also be taken into account. Natural or artificial free beach-rocks located in a specific intertidal zone are essential refuges for blue sea-kraits (*Laticauda laticauda*) but not for yellow sea-kraits that are capable of using a wide variety of refuges (*L. saintgironsi*) (Bonnet et al., 2009). These two species, which use the same coral islands, will respond differently to conservation actions based on a single type of artificial refuges (Bonnet & Brischoux 2019). This means that even the filled-in cells in Table 1 may be more incomplete than initially estimated.

Large, partially enclosed refuges should have a strong capacity to buffer ambient thermal and hydric fluctuations (McKelvey, 2024) and they are likely to be suitable for many species to meet their key ecological needs (hibernation, aestivation, reproduction, etc.). However, given systematically limited financial resources, it is essential to optimise the size, depth, number and density of artificial refuges among other things. Yet, important information is often lacking, such as the depth of the excavation or the volume of the refuge. This last parameter, which is generally neglected, may be important in certain biotopes subject to extreme climatic conditions (e.g. arid desert) where too great a distance between refuges may even prohibit movement (Lagarde et al., 2012). Having access to accurate and relevant information can help prevent the random selection of construction parameters, which could result in unnecessary costs (oversizing) and/or poor shelter quality (undersizing). Similarly, monitoring of thermal and moisture conditions of refuges, as well as occupancy by target species, is not systematically reported. Even rarer are studies that consider all the elements useful to managers (Cowan et al., 2020; Watchorn et al., 2022). In addition, artificial refuges should be compared with natural refuges and occupancy assessments should preferably be carried out over the long term (Ebrahimi et al., 2012; Herbert, 2020).

One important factor is that construction and monitoring costs are generally not considered in the scientific literature, perhaps because these costs are covered by research programmes (Deso and Reynier, 2024; Tatin and Renet, 2016). This practical knowledge is more commonly found in the grey literature. Although not peer-reviewed, this type of literature can be very useful for practical questions. In any case, it is important for conservation stakeholders to be informed of all costs,

both in terms of material and labour, in order to make the necessary trade-offs between costs and the researched positive effects of the measure.

It is not always possible to set up experiments in the field, but part of the lack of experimental results is due to initial choices: it is essential to carry out experimental tests to find the best solution in order to implement appropriate conservation measures in relation to the ecology of the target species (Figure 2). If several refuges are planned, it is desirable to vary one (or a few) key factors (Staugas et al., 2013; Thierry et al., 2009). Additionally, those findings might provide guidance to avoid negative impact and the creation of ecological traps. Even though failure was not documented in the compiled literature, the need to pursue experimentation to obtain more efficient artificial refuges was recognized (Tatin and Renet, 2016; Turner et al., 2024).

Conclusion

Despite relevant findings (Table 1), from an operational point of view, the taxonomic and ecological diversity of squamates and their specific needs do not fit well with the small number of studies on artificial refuges. Large refuges made of heterogeneous materials can accommodate different species, different age cohorts and fulfil different ecological needs; they play a generalist role. However, refuges that are precisely sized, positioned and constructed with selected materials, often targeted at species or populations at risk of extinction, also have a role to play (e.g. conservation of New Zealand lizards).

In all cases, it is essential to optimise the construction, but on what basis? Taking into account the environmental, logistical and financial constraints on the construction of reptile refuges, this review highlights some major shortcomings. In order to standardise techniques, we suggest that the designs be described in detail, including the costs, and that an experimental approach be taken where possible. An important point is to assess the need for the construction of refuges, and if so, to carefully select the locations. Indeed, the benefits for target species and associated habitats are rarely documented. As many studies have not been subject to quantitative follow-up or control comparisons, our ability to assess the true impact of conservation is limited. There may also be a publication bias in favour of successful cases. Thus, while compiling what is known, we emphasize that the effectiveness of most interventions has yet to be critically evaluated. Filling these gaps is an urgent challenge for conservationists as they try to find the best way to ensure the restoration of suitable habitats for target taxa, and to avoid the creation of ecological traps.

References

Arida EA, Bull CM. 2008. Optimising the design of artificial refuges for the Australian skink, *Egernia stokesii*. *Applied Herpetology* 5: 161–172.

Billy G, Barbraud C, Dahirel M, Bonnet X. 2024. Does strict protection status harm snake populations in a temperate forest? *Journal for Nature Conservation* 81: 126683.

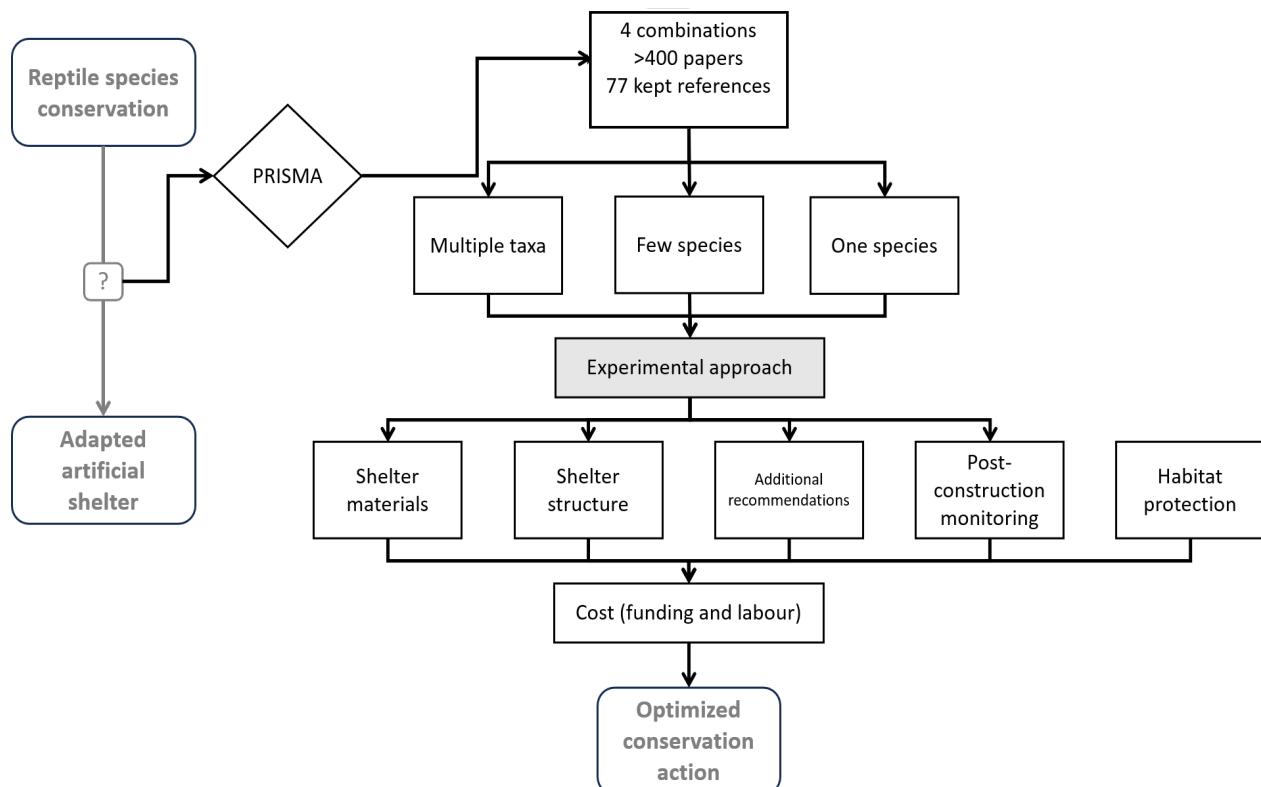


Fig. 2: Organization chart of relevant approach to achieve an optimized conservation action.

Böhm M, Collen B, Baillie JEM, Bowles P, Chanson J, Cox N, Hammerson G, Hoffmann M, Livingstone SR, Zug G, et al. 2013. The conservation status of the world's reptiles. *Biological Conservation* 157: 372–385.

Bonnet X, Brischoux F, Pearson D, Rivalan P. 2009. Beach rock as a keystone habitat for amphibious sea snakes. *Environmental Conservation* 36: 62–70.

Bonnet, X., & Brischoux, F. (2019). Terrestrial habitats influence the spatial distribution and abundance of amphibious sea kraits: implication for conservation. In H. B. Lillywhite & M. Martins (Eds.), *Islands and snakes in islands and snakes. Isolation and adaptive evolution* (pp. 72–95). Oxford University Press.

Boon JS, Keith SA, Exton DA, Field R. 2023. The role of refuges in biological invasions: A systematic review. *Global Ecology and Biogeography* 32: 1244–1271.

Boscarino-Gaetano R, Vernes K, Nordberg EJ. 2024. Creating wildlife habitat using artificial structures: a review of their efficacy and potential use in solar farms. *Biological Reviews* 99: 1848–1867.

Brown WS, Parker WS, Elder JA. 1974. Thermal and spatial relationships of two species of colubrid snakes during hibernation. *Herpetologica* 30: 32–38.

Bruckerhoff LA, Kamees LK, Holycross AT, Painter CW. 2021. Patterns of survival of a communally overwintering rattlesnake using an artificial hibernaculum. *Ichthyology & Herpetology* 109: 64–74.

Canós-Burguete M, Torrijo-Salesa M, Tortosa FS, Guerrero-Casado J. 2023. Lack of refuge as a bottleneck for reptiles in intensive woody crops. *Amphibia-Reptilia* 44: 213–225.

Carver S, Convery I, Hawkins S, Beyers R, Eagle A, Kun Z, Van Maanen E, Cao Y, Fisher M, Soulé M, et al. 2021. Guiding principles for rewilding. *Conservation Biology* 35: 1882–1893.

Chandler HC, Jenkins CL, Bauder JM. 2022. Accounting for geographic variation in species-habitat associations during habitat suitability modeling. *Ecological Applications* 32: e2504.

Choquette JD, Savi LM, Fournier C. 2024. An inexpensive artificial snake hibernaculum built using readily available plumbing supplies. *MethodsX* 12: 102641.

Chukwuka CO, Monks JM, Cree A. 2020. Heat and water loss versus shelter: a dilemma in thermoregulatory decision making for a retreat-dwelling nocturnal gecko. *Journal of Experimental Biology* 223: jeb231241.

Cortina-Segarra J, García-Sánchez I, Grace M, Andrés P, Baker S, Bullock C, Decler K, Dicks LV, Fisher JL, Ventocilla JL, et al. 2021. Barriers to ecological restoration in Europe: expert perspectives. *Restoration Ecology* 29: e13346.

Cowan MA, Callan MN, Watson MJ, Watson DM, Doherty TS, Michael DR, Dunlop JA, Turner JM, Moore HA, Nimmo DG, et al. 2021. Artificial refuges for wildlife conservation: what is the state of the science? *Biological Reviews* 96: 2735–2754.

Cowan MA, Dunlop JA, Turner JM, Moore HA, Nimmo DG. 2020. Artificial refuges to combat habitat loss for an endangered marsupial predator: How do they measure up? *Conservation Science and Practice* 2: e204.

Croak B, Pike D, Webb J, Shine R. 2010. Using artificial rocks to restore nonrenewable shelter sites in human-degraded systems: Colonization by fauna. *Restoration Ecology* 18: 428–438.

Croak B, Webb J, Shine R. 2013. The benefits of habitat restoration for rock-dwelling velvet geckos *Oedura lesuerii*. *Journal of Applied Ecology* 50: 432–439.

Deso G, Reynier T. 2024. Construction of a refuge wall with crevices to protect European leaf-toed geckos *Euleptes europaea* and young Turkish geckos *Hemidactylus turcicus* on the Ile du Levant, France. *The Herpetological Bulletin* 167: 20–24.

Dodd CK. 2016. *Reptile Ecology and Conservation: A Handbook of Techniques*. Oxford University Press, 492 p.

Ebrahimi M, Fenner AL, Bull CM. 2012. Lizard behaviour suggests a new design for artificial burrows. *Wildlife Research* 39: 295–300.

Fosseries G, Herrel A, Godoy-Diana R, Gaucher P, Traimond M, Joris A, Daoues K, Gouygou A, Chateau O, Bonnet X, et al. 2024. Can all snakes swim? A review of the evidence and testing species across phylogeny and morphological diversity. *Zoology* 167: 126223.

Gann GD, McDonald T, Walder B, Aronson J, Nelson CR, Jonson J, Hallett JG, Eisenberg C, Guariguata MR, Dixon KW, et al. 2019. International principles and standards for the practice of ecological restoration. Second edition. *Restoration Ecology* 27: S1–S46.

Gillingham JC, Carpenter CC. 1978. Snake hibernation: construction of and observations on a man-made hibernaculum (Reptilia, Serpentes). *Journal of Herpetology* 12: 495–498.

Goode MJ, Swann DE, Schwalbe CR. 2004. Effects of destructive collecting practices on reptiles: A field experiment. *Journal of Wildlife Management* 68: 429–434.

Grillet P, Cheylan M, Thirion JM, Doré F, Bonnet X, Dauge C, Chollet S, Marchand MA. 2010. Rabbit burrows or artificial refuges are a critical habitat component for the threatened lizard, *Timon lepidus* (Sauria, Lacertidae). *Biodiversity and Conservation* 19: 2039–2051.

Hanski I. 2011. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. *Ambio* 40: 248–255.

Herbert S. 2020. Is habitat enhancement a viable strategy for conserving New Zealand's endemic lizards? Ph.D. Dissertation, Te Herenga Waka-Victoria University of

Wellington.

Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. *Ecological Monographs* 54: 187–211.

Keppers JL, Skoruppa MK, Woodin MC, Hickman GC. 2008. Use of artificial burrows by Western Burrowing Owls and other vertebrates during winter in southern Texas. *Bulletin of the Texas Ornithological Society* 41: 59–64.

Lagarde F, Louzizi T, Slimani T, Mouden HE, Kaddour KB, Moulherat S, Bonnet X. 2012. Bushes protect tortoises from lethal overheating in arid areas of Morocco. *Environmental Conservation* 39: 172–182.

Langkilde T, Shine R. 2004. Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. *Oecologia* 140: 684–691.

Lelièvre H, Blouin-Demers G, Bonnet X, Lourdais O. 2010. Thermal benefits of artificial shelters in snakes: A radiotelemetric study of two sympatric colubrids. *Journal of Thermal Biology* 35: 324–331.

Li G, Fang C, Watson JEM, Sun S, Qi W, Wang Z, Liu J. 2024. Mixed effectiveness of global protected areas in resisting habitat loss. *Nature Communications* 15: 8389.

Liberman YR, Ben-Ami F, Meiri S. 2024. Artificial cover objects as a tool for the survey and conservation of herpetofauna. *Biodiversity and Conservation* 33: 1575–1590.

Löwenborg K, Kärnemo S, Tiwe A, Hagman M. 2012. Agricultural by-products provide critical habitat components for cold-climate populations of an oviparous snake (*Natrix natrix*). *Biodiversity and Conservation* 21: 2477–2488.

Macartney JM, Larsen KW, Gregory PT. 1989. Body temperatures and movements of hibernating snakes (*Crotalus* and *Thamnophis*) and thermal gradients of natural hibernacula. *Canadian Journal of Zoology* 67: 108–114.

Madani G, Pietsch R, Beranek CT. 2023. Where are my dragons? Replicating refugia to enhance the detection probability of an endangered cryptic reptile. *Acta Oecologica* 119: 103910.

Manning AD, Cunningham RB, Lindenmayer DB. 2013. Bringing forward the benefits of coarse woody debris in ecosystem recovery under different levels of grazing and vegetation density. *Biological Conservation* 157: 204–214.

McKelvey V. 2024. Natural and artificial hibernacula use by three sympatric snake species. Ph.D. Dissertation, Thompson Rivers University, Kamloops.

McKinney ML. 2006. Urbanization as a major cause of biotic homogenization. *Biological Conservation* 127: 247–260.

Mering ED, Chambers CL. 2014. Thinking outside the box: A review of artificial roosts for bats. *Wildlife Society Bulletin* 38: 741–751.

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 6: e1000097.

Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SLL, Hoskins AJ, Lysenko I, Purvis A, et al. 2016. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. *Science* 353: 288–291.

Palmer A, Milner RNC, Howland B, Gibbons P, Kay GM, Sato CF. 2022. Rock supplementation as an ecological restoration strategy for temperate grassland reptiles. *Austral Ecology* 47: 1402–1414.

Pearson D, Shine R, Williams A. 2005. Spatial ecology of a threatened python (*Morelia spilota imbricata*) and the effects of anthropogenic habitat change. *Austral Ecology* 30: 261–274.

Pike DA. 2016. Conservation management. Pp. 419–435 In: *Reptile Ecology and Conservation: A Handbook of Techniques*. Oxford University Press, Oxford, 496 p.

Reading CJ, Luiselli LM, Akani GC, Bonnet X, Amori G, Ballouard JM, Filippi E, Naulleau G, Pearson D, Rugiero L. 2010. Are snake populations in widespread decline? *Biology Letters* 6: 777–780.

Regal PJ. 1967. Voluntary hypothermia in reptiles. *Science* 155: 1551–1553.

Rueegger N. 2016. Bat boxes - a review of their use and application, past, present and future. *Acta Chiropterologica* 18: 279–299.

Santos X, Pleguezuelos JM, Chergui B, Geniez P, Cheylan M. 2022. Citizen-science data shows long-term decline of snakes in southwestern Europe. *Biodiversity and Conservation* 31: 1609–1625.

Shin Y, Miller J, Duggan JM. 2021. Observations on the year-round communal use of an artificial structure by Northern Pacific rattlesnakes *Crotalus oreganus oreganus* in coastal Central California. *Herpetological Bulletin* 155: 25–27.

Shine R, Bonnet X. 2009. Reproductive biology, population viability and options for field management. Pp. 172–200 In: *Snakes: Ecology and Conservation*. Mullin SJ and Seigel RA, Cornell University Press (Ed.), New York, 365 p.

Shoo LP, Wilson R, Williams YM, Catterall CP. 2014. Putting it back: Woody debris in young restoration plantings to stimulate return of reptiles. *Ecological Management & Restoration* 15: 84–87.

Siers SR, Yackel Adams AA, Reed RN. 2018. Behavioral differences following ingestion of large meals and consequences for management of a harmful invasive snake: A field experiment. *Ecology and Evolution* 8: 10075–10093.

Simões T, Pyron R. 2021. The squamate tree of life. *Bulletin of the Museum of Comparative Zoology* 163: 47–95.

Staugas EJ, Fenner AL, Ebrahimi M, Bull CM. 2013. Artificial burrows with basal chambers are preferred by pygmy bluetongue lizards, *Tiliqua adelaidensis*. *Amphibia-Reptilia* 34: 114–118.

Tatin L, Renet J. 2016. Créer des gîtes artificiels afin de restaurer des populations de reptiles : retour d'expériences sur le lézard ocellé *Timon lepidus* (Daudin, 1802) en Crau (Bouches-du-Rhône). *Bulletin de la Société Herpétologique de France* 159: 47–59.

Thierry A, Lettink M, Besson AA, Cree A. 2009. Thermal properties of artificial refuges and their implications for retreat-site selection in lizards. *Applied Herpetology* 6: 307.

Todd J, Amiel J, Wassersug R. 2009. Factors influencing the emergence of a northern population of Eastern Ribbon Snakes (*Thamnophis sauritus*) from artificial hibernacula. *Canadian Journal of Zoology* 87: 1221–1226.

Torres A, Fernández N, zu Ermgassen S, Helmer W, Revilla E, Saavedra D, Perino A, Mimet A, Rey-Benayas JM, Pereira HM, et al. 2018. Measuring rewilding progress. *Philosophical Transactions of the Royal Society B: Biological Sciences* 373: 20170433.

Turner MK, Kelly D, Lettink M. 2024. Concrete refuges and the influence of temperature on artificial refuge occupation by terrestrial lizards. *New Zealand Journal of Zoology* 1–14.

Uetz P, Freed P, Aguillar R, Reyes F, Kudera J, Hošek J. 2024. The Reptile Database. Available: <http://www.reptile-database.org> [Accessed 1.17.25].

Watchorn DJ, Cowan MA, Driscoll DA, Nimmo DG, Ashman KR, Garkaklis MJ, Wilson BA, Doherty TS. 2022. Artificial habitat structures for animal conservation: design and implementation, risks and opportunities. *Frontiers in Ecology & the Environment* 20: 301–309.

Whitaker PB, Shine R. 2003. A radiotelemetric study of movements and shelter-site selection by free-ranging brownsnakes (*Pseudonaja textilis*, Elapidae). *Herpetological Monographs* 17: 130–144.

Whiting C, Booth HJ. 2012. Adder *Vipera berus* hibernacula construction as part of a mitigation scheme, Norfolk, England. *Conservation Evidence* 9: 9–16.

Zappalorti R, Reinert HK. 1994. Artificial refugia as a habitat-improvement strategy for snake conservation. *Contribution to Herpetology* 11: 369–375.

Zhang L, Ma X, Chen Z, Wang C, Liu Z, Li X, Xing X. 2023. Negative effects of artificial nest boxes on birds: A review. *Avian Research* 14: 100101.

Florian Laurence is a French PhD student in ecology and herpetology at the University of La Rochelle (France) co-supervised by the Centre d'Etudes Biologiques de Chizé (UMR 7372, France) and the Conservatoire d'Espaces Naturels d'Occitanie. His actual study focusses on the ecology (spacial distribution, habitat use, demographic parameters) and conservation of two snake species (*Malpolon monspessulanus* and *Zamenis scalaris*) within French Mediterranean basin. His research interest in the herpetofauna group encompass population ecology, biology and applied conservation.

Jérémie Demay works in nature protection and conservation at the Conservatoire d'Espaces Naturels d'Occitanie (CEN Occitanie). His conservation projects focus on typically Mediterranean biodiversity, in the context of increasing human pressures and global changes.

Olivier Scher holds a doctorate in ecology from the University of Marseille (France). He is passionate about vertebrate ecology, and is particularly interested in birds and turtles.

He currently works for an NGO (CEN Occitanie) on the study and conservation of endangered species in the Mediterranean region.

Xavier Bonnet is a CNRS researcher at the Centre d'Etudes Biologiques de Chizé (UMR 7372, France). During the last 34 years, he has studied snakes and turtles in various places (France, Morocco, Uzbekistan, Togo, Australia, New Caledonia or North-Macedonia). Interested in ecology, evolution, conservation, and environmental education, he has set up long-term field studies and collaborations.

Appendix 1. Terms, associated number of results and conserved publications. +: “and”; |: “or”.

Terms used	Number of results	Conserved publications
artificial refuge + snake reptile	45900	100
artificial refuge artificial shelter artificial hibernaculum + snake reptile lizard	1750	100
“habitat restoration” “habitat management” + snake lizard reptile + artificial hibernaculum artificial shelter artificial refuge	4810	100
“habitat restoration” “habitat management” + snake lizard reptile	16800	100

Systematic review of various artificial refuges for reptile conservation

Appendix 2. Technical characteristics of artificial shelters.

Reference	Type of literature	Experimental test	Target group (species)	Period of creation	Bottom dug		Surface	Composition	Other preconisation
					Yes/No	Depth			
Shelters and hibernacula									
ARCA2E, 2023	Grey	No	Reptiles	Late summer to early fall	Yes	0,50m	/	Bottom: thin layer of sand, gravel or uncompacted soil. General: mixture of large blocks, branches, tree stumps and crushed vegetation. Top: layer of pebbles or a few rocks and uncompacted soil.	/
Casanova, 2022	Grey	No	Reptiles	/	No	/	/	Bottom: / General: mix of tree trunks, large stones, branches, brush, boards, leaves, bricks and uncompacted soil. Top: mix of brush, uncompacted soil and leaves.	High point. Good exposure. Connectivity with the existing environment (edge, rypisilve).
Deso and Bonnet, 2024a, 2024b	Scientific	No	Snakes	/	Yes	/	>20m ²	/	/
Deso and Reynier, 2024	Scientific	No	Geckos (<i>Euleptes europae</i>)	September	No	/	±10m ²	Bottom: / General: concrete blocs (50 x 25 x 20 cm) on three layers, with 0.4-0.7 cm spaces between blocs. Top: uncompacted soil.	/
GéoPlusEnvironnement, 2013	Grey	No	Reptiles	/	Yes	2m	/	Bottom: / General: large stones, concrete blocks, stumps, piles of branches, logs, pipes (concrete); add of sand. Top: seeded uncompacted soil and scree.	Good exposure. Connectivity with the existing environment (wood).
Guérineau and Brepson, 2017	Grey	No	Reptiles	/	Yes	/	/	Bottom: / General: hollow bricks cover with flat rocks and geotextile cloth. A stone wall is constructed above and surrounding the structure. Top: uncompacted soil covered by slate slabs.	Good exposure.
Ingerop, 2022, 2023	Grey	No	Reptiles	Fall	Yes	0.50m	1-2m ²	Bottom: / General: stones (5-15 cm), branches. Top: topsoil.	/
Kenwright, 2024	Grey	No	Reptiles	/	No	/	/	Bottom: / General: piles cut brambles and brackens. Top: /	/
Kerroux, 2023; Schwartz, 2020	Scientific	Yes No	Lizards (<i>Timon Lepidus</i>)	/	Yes No	/	/	Permanent shelter: Bottom: little rocks. General: half side uncompacted soil, half side limestone blocks. Top: /	« Day » refuges: Bottom: / General: stone blocks of various sizes. Top: /
McKelvey, 2024	Scientific	No	Snakes	Spring	Yes	1-6m	150/ 262m ²	Bottom: / General: large stones (0.3-0.75 cm) cover by geotextile cloth. Top: 2.5-3m of uncompacted soil to recreate the natural slope.	Presence of PVC tube for temperature and humidity monitoring.
Mouflette, Reymann, et al., 2021; Mouflette, Urge, et al., 2021	Grey	No	Reptiles	/	No	/	/	Bottom: / General: box (concrete) surrounded by litter; mixture of crushed vegetation, stumps, stones. Top: branches; stone blocks.	High point. Good exposure. Connectivity with the existing environment (edges).
Nickels & Biagi, 2015	Grey	No	Snakes	September - October	Yes	/	/	Bottom: landscape fabric. General: stones of varying sizes or logs. Top: seeded uncompacted soil.	Presence of a PVC tube for occupancy monitoring.
Reynier Environnement, 2020	Grey	No	Reptiles	/	No	/	/	Bottom: / General: Stone blocks of different sizes. Top: /	Good exposure.

Appendix 2 (continued). Technical characteristics of artificial shelters.

Seleck et al., 2022	Grey	No	Reptiles	/	Yes No	/	/	Hibernacula: Bottom: / General: stone blocks of various sizes (20-40cm). Top: uncompacted soil.	« Day » refuges: Bottom: / General: stone blocks of various sizes. Top: /	/
Showler et al., 2005	Scientific	No	Lizard (<i>Zootoca vivipara</i>)	September	Yes	1m	30m ²	Bottom: / General: plastic piping with extremity reaching the surface, cover with a mix of bricks, gravel, rubbles and vegetation. Above: logs and branches, complete by slabs and partially cover with vegetation and uncompacted soil.	South exposure. Plastic pipes are used to create entrance, entrance being reduced in size to avoid predation.	
Stebbins, 2000	Scientific	No	Reptiles	/	Yes	1m	20m ²	Bottom: / General: concrete blocks and crushed vegetation. Above: branches and grass cuttings.	PVC tube to create entrances.	
Tatin and Renet, 2016	Scientific	No	Lizards (<i>Timon Lepidus</i>)	Winter	No	/	4m ²	Bottom: / General: concrete block cover with uncompacted soil limestone blocks. Top: /	Electrical conduit (diameter of 70cm) to create entrances, used for temperature and humidity monitoring.	
Vakuo, 2024	Grey	No	Reptiles	/	Yes	/	/	Bottom: / General: box (concrete) surrounded by litter. Top: branches.	High point. Good exposure. Connectivity with the existing environment (edges).	
Whiting & Booth, 2012	Scientific	No	Snake (<i>Vipera berus</i>)	/	Yes	/	/	Bottom: straw. General: branches, logs, bundles of reeds. Top: uncompacted soil and peat.	Good exposure. Protected from flooding.	
Zappalorti and Reinert, 1994; Zappalorti, 2016; Zappalorti et al., 2014	Scientific	No	Snakes	/	Yes	1.8m	±18m ²	Bottom: / General: alternate stacking of railroad ties to create a rectangular box-like buried structure, fill with stumps, piles of branches, logs and sandy soil; dig part cover with railroad ties, covered with plastic sheeting. Top: stumps, branches, logs covered with sandy soil	Presence of PVC tube to create entrances.	
Artificial burrows										
Choquette et al., 2024	Scientific	No	Snakes	/	No	/	/	Bottom: / General: vertical cylinder of ±160 cm long by ±10 cm wide, composed of tubes and chambers of various sizes. Top: remaining soil from excavation place surrounding the entrance.	/	
Davis and Theimer, 2003	Scientific	Yes	Lizard (<i>Holbrookia maculata</i>)	August	No	/	/	Bottom: / General: handmade burrows with a 20 cm wide entrance and 60-75 cm deep. Top: /	/	
Ebrahimi et al., 2012; Milne et al., 2003; Souter et al., 2004	Scientific	Yes No	Lizard (<i>Tiliqua adelaidensis</i>)	/	No	/	/	Bottom: / General: vertical cylinder of wood of 30 cm length and a 13/17/20 mm internal diameter. Top: /	/	
Grillet et al., 2010	Scientific	No	Lizard (<i>Timon Lepidus</i>)	November	Yes	40-50 cm	/	Bottom: / General: wooden box of 50 x 25 x 25 cm, without bottom, laterally connected to the surface using two PVC ringed pipes. Top: sand.	/	
Madani et al., 2023	Scientific	Yes	Skink and snakes	/	No	/	/	Bottom: / General: vertical cylinder of ±14 cm long by ±2 cm wide. Comparison with roof tile (329 mm wide and 415 mm long, 25 mm thick). Top: /	/	

Systematic review of various artificial refuges for reptile conservation

Appendix 2 (continued). Technical characteristics of artificial shelters.

Staugas et al., 2013	Scientific	Yes	Lizard (<i>Tiliqua adelaidensis</i>)	/	No	/	/	Bottom: / General: 1) vertical cylinder of wood of 20 cm long and a 20 mm internal diameter; 2) 10cm long cylinder with a basal chamber of 100 mm diameter; 3) 15cm long cylinder with a basal chamber of 60 mm wide for 50 mm depth; 4) 16 cm long cylinder with a basal chamber of 40 mm wide for 40 mm depth. Top: sand.	/
Specific structures									
Agnew, 2022	Scientific	No	Skinks and other small lizards	/	No	/	/	Habitat Pods consisting of an exterior perforated cardboard shell supported by an internal base.	Placed in order to create networks.
Burton, 2010	Scientific	No	Monitor lizards (<i>Cyclura lewisi</i>)	/	No	/	/	Yearlings retreats: Concrete structure reproducing hollowed branches, installed in trees. Adults retreats: Concrete structure with loop configuration, cover with rocks and installed on the ground.	/
Croak et al., 2010, 2012, 2013	Scientific	No	Reptiles	/	No	/	/	Artificial rocks of $\pm 55 \times 38.5$ cm, with a mean thickness of 42 mm; strips of closed-cell foam tape (1.5 cm wide and 1 cm thick) present at the bottom to create a frame with 0.4-0.6 cm interstices.	/
Gillingham and Carpenter, 1978	Scientific	No	Snakes	/	Yes	1.9m	$\pm 43\text{m}^2$	Bottom: layer of poured concrete with drain and run-off sink. General: walls made of corrugated, preformed concrete building sheets; a face is covered with a concrete block stack, link to the outside at the top with a 10 cm concrete entrance. Top: seeded uncompacted soil.	Presence of an observation chamber separate by a wall and pierced by observation ports.
Cecilia Hernández-Bocardo et al., 2019	Scientific	Yes	Lizard (<i>Gerrhonotus parvus</i>)	/	No	/	/	Refuge (20 cm long \times 12 cm wide \times 3.5 cm high) with circular and square chamber connected by passage, on platform of 10 or 19 cm height	/
Langkilde and Shine, 2004	Scientific	No	Skink	/	No	/	/	Plastic shelter of 13 cm long \times 13 cm wide \times 2 cm deep.	/
Lazcano et al., 2020	Scientific	Yes	Lizard (<i>Gerrhonotus parvus</i>)	/	No	/	/	Refuge (20 cm long \times 12 cm wide \times 4.5 cm high) on platform of 10 or 19 cm height	/
Lettink et al., 2008; Lettink and Cree, 2007	Scientific	Yes	Skinks	/	No	/	/	Comparison of triple-layered onduline stack of three slabs (40 cm long \times 28 cm wide, with 0.2 cm of space between slabs), triple-layered corrugated iron stack of three slabs (45 x2 3cm) and with one concrete roofing tile (39 \times 32 cm).	/
Lettink et al., 2010	Scientific	Yes	Skink (<i>Oligosoma macconni</i>)	/	No	/	/	Comparison of single layer slabs (58 long x40 wide) with double layer slabs (40x28, with 1cm space between slabs).	/
Thierry et al., 2009	Scientific	Yes	Skink and gecko	/	No	/	/	Comparison of tree layers of undulate slabs (40 long x28 wide x 0.25 thick cm), iron slabs (45x23x0.1 cm) and solid concrete (39x32x2.5 cm).	/
Todd et al., 2009	Scientific	No	Snake (<i>Thamnophis Sauritus</i>)	/	No	/	/	Experimental hibernacula of 60 cm high, 40 cm wide and 12 cm deep, with four alternatively placed shelves (angle of $\pm 77^\circ$ from vertical) to create a zigzag. Slate aggregates are present at the bottom and on each shelf. Tubes at two levels to create a water flow.	/
Turner et al., 2024	Scientific	No	Lizards	September	No	/	/	Concrete block of 120 mm high, 320 mm long and 300 mm wide, with 5-10mm high for 230 mm wide x 250 deep crevice and a basking place in front of it.	/
Webb and Shine, 2000	Scientific	No	Skink and snakes	/	No	/	/	Artificial rocks of ± 19 cm wide \times 5 cm thick, creating tow size of interstices with the ground of 4 and 8mm.	/

References

Agnew L. 2022. Reptile responses to artificial refuges and fire cues in post-fire environments. Ph.D. Dissertation, Faculty of Science and Engineering Macquarie University, Sydney.

ARCA2E. 2023. Demande de prolongation d'exploitation d'une carrière de pierre de taille - Commune de Ménerbes (84) - Annexes de l'étude d'impact (Pièce 4).

Burton F. 2010. Artificial retreats for restoration of Grand Cayman blue iguanas to the wild: a report to the British Herpetological Society (BHS). *Herpetological Bulletin* 114 : 19–23.

Casanova L. 2022. Révision allégée du PLU de Bouilly (51) - Évaluation environnementale - Volet écologique.

Cecilia Hernández-Bocardo S, Lazcano D, Wilson LD. 2019. Optimizing the Design of Artificial Shelters for the Pygmy Alligator Lizard (*Gerrhonotus parvus*) in Captivity. *Herpetological Review* 50: 735–739.

Choquette JD, Savi LM, Fournier C. 2024. An inexpensive artificial snake hibernaculum built using readily available plumbing supplies. *MethodsX* 12: 102641.

Croak B, Pike D, Webb J, Shine R. 2010. Using artificial rocks to restore nonrenewable shelter sites in human-degraded systems: Colonization by fauna. *Restoration Ecology* 18: 428–438.

Croak BM, Pike DA, Webb JK, Shine R. 2012. Habitat Selection in a rocky landscape: Experimentally decoupling the influence of retreat site attributes from that of landscape features. *PLoS ONE* 7: e37982.

Croak BM, Webb JK, Shine R. 2013. The benefits of habitat restoration for rock-dwelling velvet geckos *Oedura lesueuri*. *Journal of Applied Ecology* 50: 432–439.

Davis JR, Theimer TC. 2003. Increased lesser earless lizard (*Holbrookia maculata*) abundance on Gunnison's prairie dog colonies and short term responses to artificial prairie dog burrows. *The American midland naturalist* 150: 282–290.

Deso G, Bonnet X. 2024a. Il est souhaitable de construire des grands gîtes pour les serpents. Presented at the 51ème congrès de la Société Herpétologique de France.

Deso G, Bonnet X. 2024b. Navigation en eau trouble. 51ème congrès de la Société Herpétologique de France.

Deso G, Reynier T. 2024. Construction of a refuge wall with crevices to protect European leaf-toed geckos *Euleptes europaea* and young Turkish geckos *Hemidactylus turcicus* on the Ile du Levant, France. *The Herpetological Bulletin* 167: 20–24.

Ebrahimi M, Fenner AL, Bull CM. 2012. Lizard behaviour suggests a new design for artificial burrows. *Wildlife Research* 39: 295–300.

GéoPlusEnvironnement. 2013. Dossier de demande d'ouverture d'une installation de Stockage de Déchets Inertes (ISDI) - Diagnostic des milieux naturels.

Gillingham JC, Carpenter CC. 1978. Snake hibernation: construction of and observations on a man-made hibernaculum (Reptilia, Serpentes). *Journal of Herpetology* 12: 495–498.

Grillet P, Cheylan M, Thirion JM, Doré F, Bonnet X, Dauge C, Chollet S, Marchand MA. 2010. Rabbit burrows or artificial refuges are a critical habitat component for the threatened lizard, *Timon lepidus* (Sauria, Lacertidae). *Biodiversity and Conservation* 19: 2039–2051.

Guérineau D, Brepson L. 2017. Construire des abris pour les lézards et les serpents.

Ingerop. 2023. Espace Naturel Sensible de la Forêt de Scévolles - Monts-sur-Guesnes (86) - Plan de gestion version finale.

Ingerop. 2022. RN 147 Déviation de Lussac-les-Châteaux - Dossier d'autorisation environnementale Volet F - Chapitre spécifique à la demande de dérogation "espèces et habitats protégés."

Kenwright T. 2024. Ecological Design Strategy (EDS) at Cae'r Glaw quarry – Proposed extension area.

Kerroux E. 2023. Étude des composantes influençant l'efficacité des mesures compensatoires en faveur du lézard ocellé (*Timon lepidus*, Daudin, 1802). M.S. Thesis, Pôle Sup Nature, Montpellier, France.

Langkilde T, Shine R. 2004. Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. *Oecologia* 140: 684–691.

Lazcano D, Hernández-Bocardo SC, Wilson LD. 2020. Notes on Mexican herpetofauna 35: Use of artificial shelters by pairs of *Gerrhonotus parvus* Knight and Scudday, 1985 (Squamata: Anguidae), with notes on behavior and interactions in captivity. Chicago Herpetological Society 55: 192–196.

Lettink M, Cree A. 2007. Relative use of three types of artificial retreats by terrestrial lizards in grazed coastal shrubland, New Zealand. *Applied Herpetology* 4: 227–243.

Lettink M, Cree A, Norbury G, Seddon PJ. 2008. Monitoring and restoration options for lizards on Kaitorete Spit, Canterbury. *DOC Research & Development Series* 301: 1–44.

Lettink M, Norbury G, Cree A, Seddon PJ, Duncan RP, Schwarz CJ. 2010. Removal of introduced predators, but not artificial refuge supplementation, increases skink survival in coastal duneland. *Biological Conservation* 143: 72–77.

Madani G, Pietsch R, Beranek CT. 2023. Where are my dragons? Replicating refugia to enhance the detection probability of an endangered cryptic reptile. *Acta Oecologica* 119: 103910.

McKelvey V. 2024. Natural and artificial hibernacula use by three sympatric snake species. Ph.D. Dissertation, Thompson Rivers University, Kamloops.

Milne T, Bull CM, Hutchinson MN. 2003. Fitness of

the Endangered Pygmy Blue Tongue Lizard *Tiliqua adelaidensis* in Artificial Burrows. *Journal of Herpetology* 37: 762–765.

Mouflette H, Reymann J, Bartheld R, Canevet J, Perez M, Menut L, Fadda S, Loumassine HE, Faure M, Ambrosini C. 2021a. Projet de centrale solaire agrivoltaïque - Commune de Pontevès (83) - Pré-diagnostic écologique.

Mouflette H, Urge P, Berel C, Canevet J, Durand G, Perez M, Menut L, Loumassine HE, Seuvre P. 2021b. Projet de centrale photovoltaïque - Commune de Travaillan (84) - Pré-diagnostic écologique.

Nickels J, Biagi E. 2015. MNP Restoration Efforts.

Reynier Environnement. 2020. Dossier de demande de dérogation au titre de l'article L411-2 du code de l'environnement portant sur le Phalaris aquatique (*Phalaris aquatica*).

Schwartz T. 2020. Les dispositifs artificiels au service de la restauration et de la compensation écologique : de l'évaluation du risque de piège écologique aux recommandations de bonnes pratiques. Ph.D. Dissertation, Université Paris Sciences et Lettres, Paris.

Seleck M, De Neve V, Taymans J, Gauquie B, Mahy G, Calozet M. 2022. LIFE in Quarries (LIFE14 NAT/BE/000364)-Final Report.

Showler DA, Aldus N, Parmenter J. 2005. Creating hibernacula for common lizards *Lacerta vivipara*, The Ham, Lowestoft, Suffolk, England. *Conservation Evidence* 2: 96–98.

Souter NJ, Bull CM, Hutchinson MN. 2004. Adding burrows to enhance a population of the endangered pygmy blue tongue lizard, *Tiliqua adelaidensis*. *Biological Conservation* 116: 403–408.

Staugas EJ, Fenner AL, Ebrahimi M, Bull CM. 2013. Artificial burrows with basal chambers are preferred by pygmy bluetongue lizards, *Tiliqua adelaidensis*. *Amphibia-Reptilia* 34: 114–118.

Stebbins R. 2000. Reptile hibernacula-Providing a winter refuge. *Enact* 4–7.

Tatin L, Renet J. 2016. Créer des gîtes artificiels afin de restaurer des populations de reptiles : retour d'expériences sur le lézard ocellé *Timon lepidus* (Daudin, 1802) en Crau (Bouches-du-Rhône). *Bulletin de la Société Herpétologique de France* 159: 47–59.

Thierry A, Lettink M, Besson AA, Cree A. 2009. Thermal properties of artificial refuges and their implications for retreat-site selection in lizards. *Applied Herpetology* 6: 307.

Todd J, Amiel J, Wassersug R. 2009. Factors influencing the emergence of a northern population of Eastern Ribbon Snakes (*Thamnophis sauritus*) from artificial hibernacula. *Canadian Journal of Zoology* 87: 1221–1226.

Turner MK, Kelly D, Lettink M. 2024. Concrete refuges and the influence of temperature on artificial refuge occupation by terrestrial lizards. *New Zealand Journal of Zoology* 1–14.

Vakuo. 2024. Diagnostic Environnemental - Commune de Mornas (84 550) - Note complémentaire au Diagnostique Ecologique.

Webb JK, Shine R. 2000. Paving the way for habitat restoration: can artificial rocks restore degraded habitats of endangered reptiles? *Biological Conservation* 92: 93–99.

Whiting C, Booth HJ. 2012. Adder *Vipera berus* hibernacula construction as part of a mitigation scheme, Norfolk, England. *Conservation Evidence* 9: 9–16.

Zappalorti R, Reinert HK. 1994. Artificial refugia as a habitat-improvement strategy for snake conservation. *Captive management and conservation of amphibians and reptiles* 11: 369–375.

Zappalorti RT. 2016. Review, Recommendations and Support for Listing the Louisiana Pinesnake (*Pituophis ruthveni*) as a Federally Threatened Species.

Zappalorti RT, Burger J, Burkett DW, Schneider DW, McCort MP, Golden DM. 2014. Fidelity of Northern Pine Snakes (*Pituophis m. melanoleucus*) to Natural and Artificial Hibernation Sites in the New Jersey Pine Barrens. *Journal of Toxicology and Environmental Health, Part A* 77: 1285–1291.

Appendix 3: Proposed guidance to report information during shelter construction

Period of creation:

Construction should be preferably carried out during period of low or declining activity. However, the possibility of individuals escaping during construction should be taken into account, for example by avoiding periods that are too cold. The periods from late summer to early autumn, with the exception of winter, should be preferred in temperate regions (ARCA2E, 2023; Deso and Reynier, 2024; Grillet et al., 2010; Ingerop, 2023, 2022; Nickels and Biagi, 2015; Showler et al., 2005).

Construction costs:

The available references suggest global costs ranging from around 70€ (60£, Showler et al., 2005) to 550€ (Ingerop, 2023, 2022), making the decision difficult for managers and stakeholders. Therefore, in addition to building materials, comprehensive information should be considered and reported. This notably includes land acquisition, equipment rental, labour, design, monitoring.

Depth of artificial refuges:

Most shelters designed for squamate reptiles are partially or fully buried to buffer environmental fluctuations. Some depths have been tested (0.5m: ARCA2E, 2023; Ingerop, 2023, 2022; 1m: Showler et al., 2005; Stebbings, 2000; 1.8m: Zappalorti and Reinert, 1994; 6m: However, in the majority of cases (most species and most situations) precise depths are not available. Different depths should be tested and the results systematically reported.

Dimensions of artificial refuges:

Few studies provide this information (e.g. 1-2m², Ingerop, 2023, 2022). The proposal to create large refuges to create different cavities are sometimes mentioned, but often without details (Deso and Bonnet, 2024a, 2024b; Deso and Reynier, 2024; McKelvey, 2024; Showler et al., 2005; Stebbings, 2000; Whiting and Booth, 2012; Zappalorti and Reinert, 1994, 1994; Zappalorti, 2016). The buffering capacity of artificial refuges against low and high ambient temperatures (or humidity conditions) should be tested and reported (Shine and Bonnet 2009).

Construction materials and technique:

- The bottom of artificial refuges aims to stabilise the refuge, particularly through the use of sand, gravel or uncompact soil (ARCA2E, 2023), small rocks (Kerroux, 2023; Schwartz, 2020), landscape fabric (Nickels and Biagi, 2015) or even straw (Whiting and Booth, 2012).
- The most common materials used to construct the core of the shelters are a mixture of stone blocks of various sizes (medium [20-40cm] to large [>40cm]),

branches, tree stumps and crushed vegetation, to which construction materials (bricks, concrete structures) may be added to create cavities. Some shelter materials are more concise, with concrete structures surrounded by crushed vegetation or litter (Mouflette et al., 2021a, 2021b; Vakuo, 2024), or even limited to piles of cut vegetation (Kenwright, 2024).

- Cover: The top layer is generally uncompact or sandy soil, a mixture of organic matter or branches, possibly supplemented by stones to create hiding and thermo-regulation sites. Experiments conducted for the conservation of the ocellated lizard have shown that an excessive top layer can impede passage and be detrimental (Schwartz, 2020). Buried concrete structures accessible by pipes can be effective (Kerroux, 2023).
- Burrows: Recommendations vary widely depending on the target species. They range from wooden cylinders a few tens of centimetres long and a few centimetres in diameter (Ebrahimi et al., 2012; Souter et al., 2004) to larger burrows 60-75 cm deep and 20 cm wide (Davis and Theimer, 2003). For snakes, large vertical cylinders approximately 160 cm long and 10 cm wide with chambers of varying sizes have been constructed (Choquette et al., 2024). Buried wooden boxes connected to the surface by plastic pipes work well for one species of lizard (*Timon lepidus*; Grillet et al., 2010). Staugas et al. (2013) tested medium-sized vertical cylinders with basal chambers of different sizes for an Australian lizard species (*Tiliqua adelaidensis*).
- Others: flooding must be considered, for example, by providing emergency exits or rooms with air pockets (Casanova, 2022; Edgar and Bird, 2005; Markle et al., 2020; Mouflette et al., 2021a, 2021b; Vakuo, 2024; Whiting and Booth, 2012). Providing suitable structures to promote thermoregulation can be useful (Casanova, 2022; GéoPlusEnvironnement, 2013; Mouflette et al., 2021a, 2021b; Reynier Environnement, 2020; Showler et al., 2005; Vakuo, 2024). Connectivity with the surrounding habitats is important (Lecq et al., 2018, 2017; Casanova, 2022; Cathrine and Norris, 2015; GéoPlusEnvironnement, 2013; Mouflette et al., 2021a, 2021b; Vakuo, 2024).

Overall, the diversity of the options creates a high level of complexity. It is therefore important to systematically report on all the elements involved in the construction of the shelters. The parameters could usefully be summarised in a table.

References

ARCA2E. 2023. Demande de prolongation d'exploitation d'une carrière de pierre de taille - Commune de Ménerbes (84) - Annexes de l'étude d'impact (Pièce 4).

Casanova L. 2022. Révision allégée du PLU de Bouilly (51) - Évaluation environnementale - Volet écologique.

Cathrine C, Norris G. 2015. Fannyside Muir construction

method statement: reptile mitigation.

Choquette JD, Savi LM, Fournier C. 2024. An inexpensive artificial snake hibernaculum built using readily available plumbing supplies. *MethodsX* 12: 102641.

Davis JR, Theimer TC. 2003. Increased lesser earless lizard (*Holbrookia maculata*) abundance on Gunnison's prairie dog colonies and short term responses to artificial prairie dog burrows. *The American midland naturalist* 150: 282–290.

Deso G, Bonnet X. 2024a. Il est souhaitable de construire des grands gîtes pour les serpents. Presented at the 51ème congrès de la Société Herpétologique de France.

Deso G, Bonnet X. 2024b. Navigation en eau trouble. 51ème congrès de la Société Herpétologique de France.

Deso G, Reynier T. 2024. Construction of a refuge wall with crevices to protect European leaf-toed geckos *Euleptes europaea* and young Turkish geckos *Hemidactylus turcicus* on the Ile du Levant, France. *The Herpetological Bulletin* 167: 20–24.

Ebrahimi M, Fenner AL, Bull CM. 2012. Lizard behaviour suggests a new design for artificial burrows. *Wildlife Research* 39: 295–300.

Edgar P, Bird DR. 2005. Action plan for the conservation of the meadow viper (*Vipera ursinii*) in Europe. Presented at the Convention on the Conservation of European Wildlife and Natural Habitats. Council of Europe, Strasbourg, France.

GéoPlusEnvironnement. 2013. Dossier de demande d'ouverture d'une installation de Stockage de Déchets Inertes (ISDI) - Diagnostic des milieux naturels.

Grillet P, Cheylan M, Thirion JM, Doré F, Bonnet X, Dauge C, Chollet S, Marchand MA. 2010. Rabbit burrows or artificial refuges are a critical habitat component for the threatened lizard, *Timon lepidus* (Sauria, Lacertidae). *Biodiversity and Conservation* 19: 2039–2051.

Ingerop. 2023. Espace Naturel Sensible de la Forêt de Scévolles - Monts-sur-Guesnes (86) - Plan de gestion version finale.

Ingerop. 2022. RN 147 Déviation de Lussac-les-Châteaux - Dossier d'autorisation environnementale Volet F - Chapitre spécifique à la demande de dérogation "espèces et habitats protégés."

Kenwright T. 2024. Ecological Design Strategy (EDS) at Cae'r Glaw quarry – Proposed extension area.

Kerroux E. 2023. Étude des composantes influençant l'efficacité des mesures compensatoires en faveur du lézard ocellé (*Timon lepidus*, Daudin, 1802). M.S. Thesis, Pôle Sup Nature, Montpellier, France.

Lecq S, Loisel A, Brischoux F, Mullin SJ, Bonnet X. 2017. Importance of ground refuges for the biodiversity in agricultural hedgerows. *Ecological Indicators* 72: 615–626.

Lecq S, Loisel A, Mullin SJ, Bonnet X. 2018. Manipulating hedgerow quality: Embankment size influences animal biodiversity in a peri-urban context. *Urban Forestry & Urban Greening* 35: 1–7.

Markle CE, Moore PA, Waddington JM. 2020. Temporal variability of overwintering conditions for a species-at-risk snake: Implications for climate change and habitat management. *Global Ecology and Conservation* 22: e00923.

McKelvey V. 2024. Natural and artificial hibernacula use by three sympatric snake species. Ph.D. Dissertation, Thompson Rivers University, Kamloops.

Mouflette H, Reymann J, Bartheld R, Canevet J, Perez M, Menut L, Fadda S, Loumassine HE, Faure M, Ambrosini C. 2021a. Projet de centrale solaire agrivoltaique - Commune de Pontevès (83) - Pré-diagnostic écologique.

Mouflette H, Urge P, Berel C, Canevet J, Durand G, Perez M, Menut L, Loumassine HE, Seuvre P. 2021b. Projet de centrale photovoltaïque - Commune de Travaillan (84) - Pré-diagnostic écologique.

Nickels J, Biagi E. 2015. MNP Restoration Efforts.

Reynier Environnement. 2020. Dossier de demande de dérogation au titre de l'article L411-2 du code de l'environnement portant sur le Phalaris aquatique (*Phalaris aquatica*).

Schwartz T. 2020. Les dispositifs artificiels au service de la restauration et de la compensation écologique : de l'évaluation du risque de piège écologique aux recommandations de bonnes pratiques. Ph.D. Dissertation, Université Paris Sciences et Lettres, Paris.

Showler DA, Aldus N, Parmenter J. 2005. Creating hibernacula for common lizards *Lacerta vivipara*, The Ham, Lowestoft, Suffolk, England. *Conservation Evidence* 2: 96–98.

Souter NJ, Bull CM, Hutchinson MN. 2004. Adding burrows to enhance a population of the endangered pygmy blue tongue lizard, *Tiliqua adelaidensis*. *Biological Conservation* 116: 403–408.

Staugas EJ, Fenner AL, Ebrahimi M, Bull CM. 2013. Artificial burrows with basal chambers are preferred by pygmy bluetongue lizards, *Tiliqua adelaidensis*. *Amphibia-Reptilia* 34: 114–118.

Stebbins R. 2000. Reptile hibernacula-Providing a winter refuge. *Enact* 4–7.

Vakuo. 2024. Diagnostic Environnemental - Commune de Mornas (84 550) - Note complémentaire au Diagnostique Ecologique.

Whiting C, Booth HJ. 2012. Adder *Vipera berus* hibernacula construction as part of a mitigation scheme, Norfolk, England. *Conservation Evidence* 9: 9–16.

Zappalorti R, Reinert HK. 1994. Artificial refugia as a habitat-improvement strategy for snake conservation. *Captive management and conservation of amphibians and reptiles* 11: 369–375.

Zappalorti RT. 2016. Review, Recommendations and Support for Listing the Louisiana Pinesnake (*Pituophis ruthveni*) as a Federally Threatened Species.